

KR C-08050

Rev.0, 5. December 2012

처짐

2012. 12. 5

한국철도시설공단

REVIEW CHART

개정 번호	개정 일자	개정사유 및 내용(근거번호)	작성자	검토자	숭인자
0	2012.12.5	설계기준 체계 전면개정 (설계기준처-3537, '12.12.5)	전병규	석종근 손병두	김영우
		ETWOS			
			4		
		E		5	
		OR		217	
	\				
			8		

경과조치

이 "철도설계지침 및 편람" 이전에 이미 시행 중에 있는 설계용역이나 건설공사에 대하여는 발주기관의 장이 인정하는 경우 종전에 적용하고 있는 우리공단 "철도설계지침 및 편람"을 그대로 사용할 수 있습니다.

일 러 두 기

- 사용자의 이용 편의를 위하여 책 단위로 구성된 "철도설계지침" 및 "편람"을 국제적인 방식에 맞게 체계를 코드별로 변경하였습니다. 또한, 코드에 대한 해설 및 목차역할을 하는 KR CODE 2012, 각 코드별로 기준 변경사항을 파악할 수 있도록 Review Chart 및 Record History를 제정하였습니다.
- 이번 개정된 "철도설계지침 및 편람"은 개정 소요가 발생할 때마다 각 항목별로 수정되어 공단 EPMS, CPMS에 게시될 것이니 설계적용 시 최신판을 확인 바랍니다.
- "철도설계지침 및 편람"에서 지침에 해당하는 본문은 설계 시 준수해야 하는 부분이고, 해설(이전 편람) 부분은 설계용역 업무수행의 편의를 제공하기 위해 작성한 참고용 기술도서입니다. 여기서, 제목 부분의 편람은 각 코드에서의 해설을 총칭한 것입니다.

목 차

1.	용어의 정의	1
2.	일반사항	1
3.	처짐의 산정	2
4.	궤도면에서의 부등변위량 검토	3
RI	ECORD HISTORY	· 6

1. 용어의 정의

- (1) 사용하중(Service Load) : 고정하중 및 표준열차하중으로서 하중계수를 곱하지 않은 것이며, 작용하중이라고도 함
- (2) 실제 열차하중 : 동적해석에 사용되는 실제 열차의 차축하중을 모델로 만든 하중
- (3) 충격계수: 정적설계시 동적 충격효과를 고려할 수 있도록 표준열차하중에 곱해지는 계수. 열차 또는 차량의 주행에 의해 구조물에 발생되는 정적응답에 대한 동적응답의 증가비율을 나타냄
- (4) 항복유효 단면2차모멘트 : 축방향력과 콘크리트의 균열을 고려하여 축방향철근이 항복하는 시점의 단면2차모멘트 강성으로서 간편식으로 산정되는 단면2차모멘트

2. 일반사항

- (1) 교량구조물의 휨부재는 강성을 가짐으로써 사용하중과 충격으로 인해 발생한 처짐 또는 변형이 구조물의 강도나 실제사용에 해로운 영향을 주지 않도록 설계해야 한다.
- (2) 처짐 검토를 위한 하중조합 및 기준은 「KR C-08070 주행안전성 및 승차감 검토」를 따른다.
- (3) 부등변위에 대한 검토를 할 때의 하중조합은 <표 1>에 따른다.

표 1. 하중조합

검토	: 항목	하중조합		
부등변위	상시	고정하중 + 열차하중 + 충격		
구중인계	지진시	고정하중 + 지진의 영향(단선재하)		

(4) 부재의 최소두께는 <표 2>에 따라야 한다. 다만, 처짐계산에 의하여 「KR C-08070 주행안전성 및 승차감 검토」을 만족하는 경우에는 <표 2>의 최소 두께를 적용할 필 요가 없다.

표 2. 높이가 일정한 부재의 최소 두께

부재의 종류	최소 두께(m)			
T 4 5 T	단순경간	연속경간		
주철근이 차량 진행방향에	1.2(l+3)	(l+3)		
평행한 교량 슬래브	30	30		
T형 거더	0.070 l	0.065 l		
박스 거더	0.060 l	0.055 l		

주) 가. 변단면 부재가 사용되는 경우, <표 2>는 정모멘트 단면과 부모멘트 단면에서의 상대강성의 변화를 고려하기 위해 수정될 수 있다.

나. l는 지간(m)를 나타낸다.

3. 처짐의 산정

- (1) 균열이 발생하지 않는 구조물 또는 부재의 순간처짐은 전단면을 유효로 보고 탄성이론으로 구한다. 이때 난간, 연석, 보도 및 거푸집이 제거되기 전에 상부구조 단면과일체로 치지 않는 요소는 모두 제외해야 한다.
- (2) 균열이 발생하는 구조물 또는 부재의 순간처짐은 균열의 발생에 따른 강성의 저하를 고려하여 구해야 한다.
- (3) 장기처짐은 지속하중하에서의 콘크리트와 철근의 응력을 고려하고 콘크리트의 크리 프 및 건조수축의 영향을 고려하여 구해야 한다.
- (4) 부재의 강성도를 엄밀한 해석방법으로 구하지 않는 한, 부재의 순간처짐은 「KR $C-10010\ 13$ 항」에 규정된 콘크리트의 탄성계수와 총단면적의 단면 2차모멘트 I_g 나 <식 (1)>로 나타낸 유효단면 <math>2차모멘트 I_g 를 사용하여 구해야 한다.

$$I_e = \left(\frac{M_{cr}}{M_a}\right)^3 I_g + \left[1 - \left(\frac{M_{cr}}{M_a}\right)^3\right] I_{cr} \le I_g \tag{1}$$

여기서, M_{cr} 은 균열모멘트로서 <식 (2)>으로 표시된다.

$$M_{cr} = \frac{f_r I_g}{y_t} \frac{(7.}{4.2}$$
 (2)

 M_a : 처짐이) 계산되는 단계에서의 부재의 휨모멘트

 I_{cr} : 콘크리트로 환산된 균열단면의 단<mark>면</mark> 2차모멘트

 y_t : 철근을 무시한 종단면의 중심축에서 인장 연단까지의 거리

 f_x : 콘크리트의 휨인장강도 $f_x = 0.63\sqrt{f_{obs}}$

다만, 경량콘크리트가 사용된 경우에는 다음과 같이 f_{r} 의 값을 수정해야 한다.

- ① f_a 가 명시된 경우에는 f_r 를 구할 때 $\sqrt{f_{ck}}$ 를 1.76 f_a 로 대치하되, 1.76 f_a 의 값은 $\sqrt{f_{ck}}$ 이 하라야 한다.
- ② f_a 가 명시되지 않은 경우에는 전 경량 콘크리트 (all-light weight concrete)에 대해서는 0.75, 모래경량 콘크리트(sand-light weight concrete)에 대해서는 0.85를 각각 f_r 에 곱한다. 일부의 모래만이 경량골재로 대치된 경우에는 직선보간법을 사용한다.
- (5) 연속지간에 대해서는 정모멘트와 부모멘트에 대한 위험단면의 단면 2차모멘트를 <식 (1)>에 의해 구하여 그 평균치를 사용해야 한다. 균열의 영향을 고려한 지간 중 앙단면의 강성은 주로 처짐에 의해 지배되기 때문에 연속부재에 대한 지간 중앙단면의 성질을 이용하면 이 규정은 만족할 만한 정확도를 얻을 수 있다.
- (6) 엄밀한 해석에 의하지 않는 한, 일반 및 경량콘크리트로 된 휨부재의 크리프 및 건조수축에 의해 생기는 추가적인 장기처짐은 해당 지속하중에 의해 발생한 순간처짐에 <식(3)>에 의해 구한 계수를 곱하여 구할 수 있다.

$$\lambda = \frac{\xi}{1 + 50\rho'} \tag{3}$$

여기서 ρ' 은 단순 및 연속지간에서는 지간 중앙단면, 그리고 캔틸레버에서는 지지부에서의 단면의 압축철근비이다. ξ 는 지속하중의 재하기간에 따라 달라지는 다음 값의 시간경과계수이다.

 5 년 이상
 2.0

 12 개월
 1.4

 6 개월
 1.2

 3 개월
 1.0

4. 궤도면에서의 부등변위량 검토

- (1) 궤도면에서의 부등변위량 검토에서 열차하중은 동적 실열차하중 또는 표준열차하중 중 큰 변위를 발생시키는 하중으로 적용하고 이때 열차는 단선재하로 한다. 표준열차하중 재하시 충격은 필요에 따라 고려하여야 한다.
- (2) 열차하중에 의한 궤도면의 허용부등변위량은 지진이 작용하지 않는 경우에는 <표 3>의 값 이하로 또한 지진이 작용하는 경우에는 <표 4>의 값 이하로 해야 한다.

표 3. 열차를 지지하는 구조물의 레일수준에서의 허용부등변위량(상시)

	열차속도 (km/h)	평행처짐 (mm) .	굴절 <mark>각(θ)</mark> (1/1000 rad.)				
변위의 방향			평행이동각		꺽임각		
0 0	(1111) 11)		L _b <30m	$30m \le L_b$	L _b <30m	$30m \le L_b$	
	120		7.5	9	9	9	
	150	2	5	6	6.5	7	
연직	200	Δ	4.5	4	5.5	4.5	
	250		3.5	3	4	3	
	300 이상	1.5	3	2.5	3	2	
	120		4	5.5	5	6	
	150	2	3	3	3.5	4	
수평	200		2.5	2	3	2.5	
	250	1.5	2	1.5	2.5	2	
	300 이상	1.0	1.5	1.0	2	1.5	

~~	4	서 기 =		コラロム	레시 시 그 네 네시	허용부등변위량(지진/	, I \
1/-	/I	9 7 L			레이들을에서이	· 정호트트미의티(시시/	ΛI 1
11.	4.	2/1/2	7 1 7 1 Ol 1			- 913 15 8 2111 3 (213)	'1 /

		평행처짐 (mm)	굴절각(θ) (1/1000 rad.)			
변위의 방향	열차속도 (km/h)		평행이동각		꺽임각	
			L _b <30m	$30m \le L_b$	$L_b < 30 m$	$30m \le L_b$
	120	20	20	20	20	20
	150	20	18	16	20	18
연직	200	16	12	10	14	11
	250	11	8.5	7	9.5	7.5
	300 이상	6	5	4	5	4
	120		9	12	11	12
	150	10	6.5	7.5	8	9.5
수평	200		5.5	5	6.5	6
	250	6	5.5	4	5.5	4
	300 이상	3.3	2.5	2.2	3	2.2

- 주) 가. 자갈도상궤도의 경우는 평행처짐에 대한 검토를 하지 않는다. 자갈도상궤도의 경우는 실제 발생하는 평행처짐량은 도상이 고체거동을 한다고 보고 해석한 결과보다 그 변형량이 최소 자갈두께의 5%까지 줄어들 수 있다.
 - 나. 정적부등변위량도 고려한 것
 - 다. 용어의 의미는 <그림 1>과 같다.

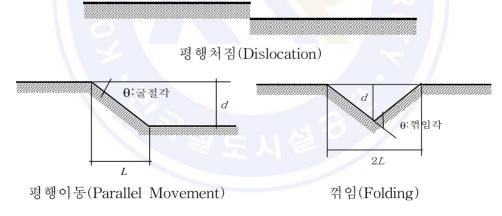


그림 1. 평행처짐, 평행이동, 꺾임

- (3) 콘크리트도상을 적용하는 교량 구조물에서는 다음과 같이 구조의 거동형식별로 온도 의 영향, 크리프, 건조수축, 릴락세이션 등 시간에 따라 변화하는 변형의 총합에 대해서 반드시 검토하여야 한다.
- ① 아치형식 및 케이블지지형식 교량: 계절별 온도 변화에 의한 변위 영향을 반드시 고려하여야 한다. 이 때 지역별 년 평균온도와 궤도설치시의 온도차이의 영향을 고려하여 본 항 변위기준을 만족하여야 한다.
- ② 콘크리트, PSC콘크리트 구조물 : 온도, 크리프, 건조수축, 릴락세이션 등에 의한 장

기적인 변위 거동이 계속되는 구조물의 경우 전 구조물 생애기간동안 발생하는 전 발생 변위를 검토하여야 한다.

- ③ 케이블지지 구조 등 릴락세이션 등의 장기적인 변위거동이 계속될 것으로 예상되는 구조물의 경우 전 구조물 생애기간동안 발생하는 전 발생변위를 검토하여야 한다.
- (4) 분기기 및 건넘선이 있는 교량에서는 본 항 하중조합 <표 1>에 의한 처짐 변형의합이 종곡선 곡률반경 6000m (볼록구간) 이상과 10000m (오목구간) 이상을 확보하여야 한다.

RECORD HISTORY

Rev.0('12.12.5) 철도설계기준 철도설계지침, 철도설계편람으로 나누어져 있는 기준 체계를 국제적인 방법인 항목별(코드별)체계로 개정하여 사용자가 손쉽게 이용하 는데 목적을 둠.

