

공단 표준규격 캠플레이트 완충재

KRSA-1007-R3

제정 2015.12.29.

개정 2023.08.18

확인

1. 적용범위 및 규격

1.1 적용범위

이 규격은 교량구간 콘크리트궤도 캠플레이트에 설치하는 캠플레이트 완충재(이하'완충재' 라 한다.)에 대하여 적용한다.

1.2 분류

항 목	품 명	세 분 류	비고
1.2.1	완충재	Type A	종방향 배치
1.2.2	완충재	Type B	종방향 배치
1.2.3	완충재	Type C	종방향 배치
1.2.4	완충재	Type D	횡방향 배치

1.3 규격

〈표 1〉완충재 분류

- 1.3.1 한국산업표준(KS)
- 1.3.2 독일산업표준(DIN)

2. 인용규격

2.1 적용범위

본 규격은 [붙임 1]의 관련 규격을 인용 적용한다.

3. 구조 및 형태

제작자는 감독자로부터 제작도면을 승인 받은 후 제품을 생산하여야 하며 완충재의 치수 및 허용오차는 다음 〈표 2〉에 적합하여야 한다.

제품형태	가로		세로		두께	
Type A	120 mm	+ 10 - 10	120 mm	+ 10 - 10	10 mm	+ 1 - 1
Type B	120 mm	+ 10 - 10	120 mm	+ 10 - 10	12.5 mm	+ 1 - 1
Type C	120 mm	+ 10 - 10	120 mm	+ 10 - 10	15 mm	+ 1 - 1
Type D	640 mm	+ 10 - 10	120 mm	+ 10 - 10	5 mm	+ 1 - 1

〈표 2〉 제품 치수 및 허용오차

4. 재료 및 제작기준

4.1 재료

4.1.1 재료는 가황된 합성고무(EPDM)의 동등 이상 품을 사용하여야 하며, 제품의 기계적 성질은 다음 〈표 3〉에 적합하여야 한다.

항 목	단 위	기 준	시험방법	비고
 경 도	Shore-A	70±5	KS M 6518	
인장강도	MPa	≥ 12	KS M 6518	
신 장 률	%	≥ 180	KS M 6518	
반발탄성	%	≥ 30	KS M 6518	
인열강도	N/mm	≥ 2.5	KS M 6518	
노화시험 - 인장강도 변화율 - 신장률 변화율	%	≤ 25 ≤ 40	KS M 6518	
저온충격취하시험	_	No break	KS M 6676	-30 ℃, 24 h
오존균열시험	_	No crack	KS M 6518	40°C,50±5 pphm / 72h / 20%인장
영구압축줄음률	%	≤ 30	KS M 6518	70±1 ℃,22 h

〈표 3〉 완충재 기계적 성질

4.2 제조 및 가공

4.2.1 색상은 흑색 또는 수요자와 협의된 색상으로 하며, 재료는 성형 전에 잘 배합하여 제조하여야 한다.

5. 검사 및 시험

자체 검사 및 시험이 불가한 경우 국내·외 시험기관에 시험을 의뢰하거나, 제작자 또는 외부설비를 이용하여 검사 및 시험을 시행할 수 있으며, 그 시험결과 이 규격에 적합하여야 한다.

5.1 검사

- 5.1.1 겉모양 및 치수 검사는 납품수량의 0.5 %를 임의 추출하여 이 규격 및 제작도면에 의하여 시행하여야 한다.
- 5.1.2 겉모양 검사

제품의 표면은 균열이 발생하거나 성능에 영향이 미칠만한 유해한 결함이 없어야 한다.

5.1.3 치수 검사

치수 및 허용오차는 〈표 2〉와 제작도면에 의하여야 한다.

5.2 시험

5.2.1 제품 10,000개 또는 그 단수를 1로트로 하여 로트 당 3개를 임의 추출, 이 규격에 의

하여 시행하되, 소재 시험은 제조회사의 출고장(Mill sheet)을 확인하여 이 규격에 적합할 경우 시험을 생략할 수 있으며, 이 규격에 부적합하거나 출고장이 없는 경우에는 시험을 시행하여야 한다.

- 5.2.2 인장강도, 신장률, 반발탄성, 인열강도, 노화시험, <mark>저온충격취하시험</mark>, 영구압축줄음률 시험은 KS M 6518 또는 DIN 53504, DIN 53508의 내용에 의하여야 한다.
- 5.2.3 오존균열시험은 KS M 6518 또는 DIN 4141의 내용에 의하여야 한다.
- 5.2.4 제품에 대한 성능시험은 [참고1]과 같이 최초 납품 시 1회 제출하여야 한다.

5.3 품질보장

5.3.1 합격품질수준

'5.1 검사' 및 '5.2 시험' 결과 이 규격에 적합할 때 합격으로 하며, 이 규격에 적합하지 않을 경우에는 해당 로트 전부를 불합격으로 한다. 다만, 불합격된 시험항목에 대하여는 1회에 한하여 재시험할 수 있으며 이때 시험 수량은 2배수로 하여야 한다.

6. 포장 및 표시

6.1 포장

일정수량을 박스 또는 파렛트에 담아 운반·적재시 손상되지 않게 하여야 하며, KS T 1002(수송포장계열치수)에 적합하도록 포장하고 밴드를 사용하여 견고히 묶어야 한다.

6.2 표시

6.2.1 제품

각 제품 위 부분의 잘 보이는 적당한 곳에는 제작자명 또는 약호, 제품형태 또는 규격 (두께치수)을 표기하여야 한다.

6.2.2 포장 표면

포장용 마대 또는 포장상자 표면의 잘 보이는 적당한 곳에는 품명, 규격, 수량, 제작자명 또는 약호, 제작년월을 표시하고, 운반이나 취급상의 주의사항을 별도로 명시하여야 한 다

[붙임 1]

<u>인 용 규 격</u>

(1) 한국산업표준(KS)

KS M 6518「가황 고무 물리 시험 방법」

KS M 6676「가황 고무 및 열가소성 고무 - 저온 특성 측정 방법」

KS T 1002「수송 포장계열 치수」

(2) 독일공업규격(DIN)

DIN 4141 Structural bearing

DIN 53508 Testing of elastomers - Accelerated ageing

[참고 1]

1. 완충재 제품 성능시험

1.1 품질기준

시험항목	시료형태	기준치	비고
수직하중시 처짐량(mm)	П	5.8 (±15 %)	시험하중 800 kN
스키크즈미 디머버린파(2)	I	199×112 (±10 %)	시험하중 285 kN
수직하중시 단면변화량(mm^2)	П	117×117(±10 %)	시험하중 115 kN
장기내구성시험			
- 크리프(Creep) 발생률(%)	П	≤ 10	
- 표면손상률(%)		≤ 15	

1.2 시료형태

시료형태	길이	폭	두께	
I	190 mm	100 mm	5 mm	
П	100 mm	100 mm	10 mm	

1.3 수직하중시 처짐량

1.3.1 시료형태에 따라 시험하중(800kN)을 10 mm/min속도로 가한상태에서 처짐량을 측정하여야 한다.

1.4 수직하중시 단면 변화량

1.4.1 1.3 시료형태에 따라 각각의 시험하중(285 kN, 115 kN)을 10 mm/min속도로 가한상 태에서 시료의 단면 변화량(최대)를 측정하여야 한다.

1.5 장기내구성시험

1.5.1 Creep 발생률

시료의 초기 두께 (T_0) 를 측정한 후, 시험기에 설치하여 60 N/m의 압축을 가하여 14일 동안 유지한 후 하중이 완전히 제거된 상태에서 24시간 방치한 후 시료의 최종 두께 (T_1) 를 측정하여 Creep 발생률을 계산한다.

Creep 발생률(%) =
$$\frac{T_0 - T_1}{T_0} \times 100$$

 T_0 : 시료의 초기 두께, T_1 : 시료의 최종 두께

1.5.2 표면손상율

Creep 발생률 시험이 끝난 시료의 표면을 알코올로 깨끗이 닦아내고 표면에 균열 발생 여부를 육안으로 확인한다. 균열이 발생된 경우 최대 균열크기를 측정한다.

RECORD HISTORY

Rev.0('15.12.29) 신규 제정(설계기준처-3709호, 2015.12.29.)

Rev.1('17.04.04) Creep발생률 시험방법 구체화(설계기준처-937호, 2017.04.04)

Rev.2('20.06.02) 오타 및 문구수정 반영(기준심사처-2185호, 2020.06.02)

Rev.3('23.08.18) KS에서 정한 시험항목으로 문구 수정(기준심사처-3029호, 2023.08.18)

