

KR E-03170

Rev.3, 5. December 2012

강체전차선의 설계

2012. 12. 5

REVIEW CHART

개정 번호	개정 일자	개정사유 및 내용(근거번호)	작성자	검토자	승인자
0	2008.11.12	철도전철전력설비 시설지침 제정 (국토부→공단 이관, 제정) (기준팀-2757호, '08.11.12)	유향복 이해원	이시용 김도원	강창호
1	2010.02.10	철도전철전력설비시설지침 전면개정 (기준심사처-269호, '10.02.10)	김동철 박순달 조성희	유승위 김도원	김영국
2	2011.12.01	철도전철전력설비설계지침 제정 (국토부 기준관리 체계 부합화) (설계기준처-373호, '11.12.01)	최석효 이해원 조성희	석종근 양인동	김영우
3	2012.12.05	설계기준체계 전면개정 (설계기준처-3537호, 12.12.05)	이해원	석종근 김은태	김영우

목 차

1. 강체전차선의 설계일반	1
2. 강체 전차선의 높이와 처짐	
3. 강체전차선의 편위	1
4. 인류구간	1
5. 강체가선 브라켓의 경간과 지지금구	1
6. 강체전차선의 접속	1
7. 급전분기장치	
8. 램프(Ramp)의 설계 ·····	2
9. 신축장치의 설계	2
10. 이행장치의 설계	2
11. 강제전차선의 건넘선의 설계	2
해설 1. 강체전차선로의 설계	
1. 설계일반	
2. 브래킷의 간격	3
3. 브래킷과 조인트간의 간격	3
4. 강체 전차선의 경간(section) 길이	3
5. 확장 장치와 인접 지지점간의 거리	
6. 편위	
7. 높이	5
8. 두 지지점간의 고저차	5
9. 분기 개소의 설치	5
RECORD HISTORY	7

1. 강체전차선의 설계일반

- (1) 강체전차선로는 전기방식에 따라 강체 R-bar 또는 강체 T-bar방식으로 한다.
- (2) T-bar 강체전차선로의 설계기준은 본 규정에도 불구하고 도시철도 관련 기준을 준용할 수 있다.

2. 강체 전차선의 높이와 처짐

- (1) 강체전차선의 높이는 전차선의 높이는 KR E 03160(전차선의 높이와 기울기)에 따른다.
- (2) 강체전차선 경간 중앙의 처짐(이도)은 지지점 간격(경간)의 1,000분의 1 이하로 하여야 한다. 다만 측선의 경우 3/1000이하로 할 수 있다.

3. 강체전차선의 편위

강체전차선의 지지점에서 편위값은 KR E-03150(전차선의 편위)에 따른다. 다만 가선은 완만한 sin곡선 형태를 갖도록 한다.

4. 인류구간

- (1) R-bar 강체가선의 인류구간 거리는 $400[m] \sim 600[m]$, T-bar 강체가선의 인류구간 거리는 $200[m] \sim 250[m]$ 을 표준으로 하며, 신축장치를 고려하여 인류구간을 조정할 수있다.
- (2) 인류구간 거리는 터널에 설치되는 환기구 및 급기구 등으로 유입되는 공기에 따라 터널 내 기온에 미치는 영향을 고려하여야 한다.

5. 강체가선 브라켓의 경간과 지지금구

- (1) 강체가선구간에서 R-bar 강체전차선의 브래킷의 간격은 10[m], T-bar 강체전차선의 브래킷은 5[m]를 표준으로 하고, 설계속도 및 처짐을 고려하여 R-bar의 경우 최대 12[m]까지 조정할 수 있다.
- (2) 강제전차선을 지지하는 지지금구(지지물)의 설치 간격은 설계속도, 선로조건, 분기개 소의 중심지점, 건넘선 등을 고려하여야 한다.
- (3) 강체전차선로의 지지금구는 강체전차선의 지그재그 편위의 횡방향 조정, 높이 조정, 곡선로에서 회전 조정이 가능하도록 하여야 한다.
- (4) 지지금구는 선로길이 방향으로 강체전차선로가 자유롭게 팽창 수축할 수 있도록 하여야 한다.

6. 강체전차선의 접속

R-bar 강체전차선의 접속은 접속판(splice plate)에 의해 상호간 접속하고 기계적, 전 기적으로 연속성이 확보되도록 하여야 한다.

7. 급전분기장치

강체전차선로에 접속하는 급전분기 장치는 강체에 적합한 클램프를 사용하여 체결하여야 하며, 공칭 정력전류에 적합한 것이어야 한다.

8. 램프(Ramp)의 설계

강체전차선로의 램프(Ramp)는 신축장치, 구분장치 및 분기선의 구성에서 집전장치의 원활한 통과를 위하여 각 섹션의 종단에 설치하여야 한다.

9. 신축장치의 설계

강체전차선로는 온도변화에 의한 강체전차선의 수축을 원활히 하기 위하여 1섹tus마다 신축장치를 설치하여야 한다.

10. 이행장치의 설계

- (1) 가공전차선 구간과 지하 강체전차선 구간의 접속구간에는 이행장치를 설치하여야 한다.
- (2) 이행장치는 가공전차선과 강체전차선의 강도 차이를 점진적으로 완화하여 상호간 같아지도록 설계하여야 한다.

11. 강제전차선의 건넘선의 설계

강체전차선의 본선과 분기선에서의 건넘선은 서로 팬터그래프의 통과에 지장이 없도록 설치하여야 한다.

해설 1. 강체전차선로의 설계

1. 설계일반

전차 선로를 설계할 때 기본적으로 노선의 조건, 운전 조건, 차량 조건, 전기 공급 조건 등을 고려하여 가선 방식을 결정하게 된다. 강체 전차선 가선 방식에서 가장 먼저 고려하여야 할 것은 노선의 최대 속도이며 이것은 최대 허용 이도와 지지점간의 간격, 지지점간의 최대 허용 높이 차. 최대 경사차 등을 고려하여 결정한다.

2. 브래킷의 간격

지지점간의 최대 거리는 전기차 속도에 따라 결정된다. 원활한 전력의 집전을 위하여이도는 속도 증가에 따라 감소되어질 수 있다. 속도에 따른 최대 허용 경간과 이도는 <표 1>과 같다.

속 도 최대 허용 이도 최대 허용 경간
≤ 80[km/h] a/750 12[m]
≤ 120[km/h] a/1300 10[m]

표 1. 브래킷의 최대 허용 간격

마지막 경간의 이도는 같은 조건에서의 경간보다 거의 3배 크다. 따라서 경간의 길이는 <표 2>에서와 같이 점진적으로 감소되도록 시설하여야 한다.

표 2. 브래킷의 경간 조정

첫 번째 경간	두 번째 경간	세 번째 경간	최대 경간
8[m]	10[m]	10[m]	10[m]
8[m]	11[m]	12[m]	12[m]

3. 브래킷과 조인트간의 간격

이것에는 특별히 정해진 간격은 없다. 즉, 접속점은 경간 내의 어느 지점이나 설치될 수 있다. 다만 강체 전차선의 교체를 위하여 브래킷 위에 설치하는 것은 좋은 방법이 아니다.

4. 강체 전차선의 경간(section) 길이

강체 전차선은 고정점과 고정점 중심에 확장 장치를 설치하고 있으며, 일반적으로 1개

의 섹션 길이는 확장 장치와 확장 장치간을 말하며, 이 길이는 고정점과 고정점의

길이와 같은 것으로 취급한다.

왜냐하면 1개의 섹션에 두 개의 고정점이 존재할 수 없기 때문이다. 따라서 이에대한 길이의 계산은 <식 (1)>을 참고하여 설명하면

전체 길이 C=A+d+B 일 때 여기에서 d의 값을 무시하면 C=A+B 가 된다.

앞에서 설명한 온도와 길이의 관계식에서

$$d' = d - \alpha_{rail} \times (\triangle T - \triangle T') \times (A + B)[m]$$

전개하면

$$(A+B) = \frac{d-d'}{\alpha_{rail} \times (\triangle T - \triangle T')} [m]$$

$$\therefore C = (A+B) = \frac{d-d'}{\alpha_{rail} \times (\triangle T - \triangle T')} [m]$$
(1)

위 식에서 확장 장치의 확장 길이의 안전 조건은 $d_{\rm max}-d_{\rm min}=0.45$ 이므로 <식 (1)>에 대입하면 다음과 같은 도표를 얻을 수 있다.

표 3. 온도차에 대한 경간의 길이

$\triangle T - \triangle T'$	20[℃]	30[℃]	40[℃]	50[℃]	60[℃]	70[℃]
C	955[m]	640[m]	480[m]	385[m]	320[m]	270[m]

5. 확장 장치와 인접 지지점간의 거리

좌 · 우로의 인접 경간은 열차의 속도에 따라 2가지의 형태가 있다.

6. 편위

가공 전차선(overhead contact line)의 편위는 톱니형의 지그재그 형태인 반면 강체 전 차선의 편위는 보다 완만한 sin 곡선의 형태를 나타내며, 설치 기준은 <표 4>와 같다.

표 4. 편위의 기준

속도	스팬	편위	간격	지지점 수
$\leq 80 [\text{km/h}]$	12[m]	20[cm]	120[m]	10
$\leq 120 [\mathrm{km/h}]$	10[m]	20[cm]	200[m]	20

표 5. 지지점별 편위

지지점 수	지지점별 편위		
10	+20, +19, +16, +12, +6, 0, -6, -12, -16, -19, -20[cm]		
20	+20, +20, +19, +18, +16, +14, +12, +9, +6, +3, 0, -3, -6, -9, -12, -14, -16, -18, -19, -20, -20[cm]		

7. 높이

강체 전차선의 전차선 높이는 레일면 위로 4,750[mm]를 최저로 하고 있다. 구조물의 지장으로 인하여 부득이 전차선 높이를 조정하여야 할 경우 최대 경사도의 한계와 최대 증가율을 준수하여야 하며 이에 대한 참고 값은 <표 6>과 같다.

표 6. 전차선의 구배

속 도	경 간	경간 최대 구배 증가	최대 최종 구배	구배 변경 경간수
$\leq 80[\text{km/h}]$	12[m]	0.8[‰]	5.0[‰]	5
$\leq 120 [\rm km/h]$	10[m]	0.7[‰]	3.5[‰]	4

8. 두 지지점간의 고저차

두 지지점간의 고저차가 심할 경우 운행되는 전기차의 집전장치에 영향을 주게 되어 이선율이 높아지기 때문에 <표 7>의 허용 고저차를 준수하여야 한다.

표 7. 허용 고저차

속 도	최대 고저차	허용 구배・경간
$\leq 80 \text{ [km/h]}$	+/-10[mm]	0.8[‰] 12[m]
$\leq 120 \text{ [km/h]}$	+/-7[mm]	0.7[‰] 10[m]

9. 분기 개소의 설치

본선과 분기선이 서로 팬터그래프로 하여금 아무 방해 없이 원만하게 연결될 수 있도록 설치하여야 한다. 두 개의 강체 전차선은 기계적으로 서로 독립된 것이며 다음과 같이 설치한다.

(1) 세로 방향

- ① 측선의 첫 번째 지지점과 그 옆의 본선 지지점 사이의 거리는 $\leq 1[m]$ 가 되도록 하여야 한다.
- ② 측선의 첫 번째 지지점과 두 번째 지지점 사이의 거리는 2[m]가 되어야 한다.

- ③ 평행 부분의 길이는 2[m] 정도로 하고 측선 부분의 압상력을 고려하여야 한다.
- ④ 분기 부분에 있는 지지점의 지나친 이동을 막기 위해 양 트랙에 분기 부분과 고정 점간에는 적정한 거리를 유지하여야 한다.
- (2) 가로 방향
- ① 강체 전차선의 평행 부분은 200[mm]의 이격 거리를 가져야 한다.
- (3) 수직 방향
- ① 양 강체 전차선은 레일면 위로 같은 높이를 유지하여야 한다. 측선 강체 전차선의 높이는 가능한 한 조금 높아야 하나 본선의 것보다 절대로 낮아서는 안 된다.
- ② 측선 강체 전차선의 끝 부분은 위로 구부려져야 한다.

RECORD HISTORY

Rev.0(12.12.5) 철도설계기준 철도설계지침, 철도설계편람으로 나누어져 있는 기준 체계를 국제적인 방법인 항목별(코드별)체계로 개정하여 사용자가 손쉽게 이용하는데 목적을 둠.