

KR A-04040

Rev.2, 29. July 2016

구조별 설계기준

2016. 7. 29

REVIEW CHART

개정 번호	개정 일자	개정사유 및 내용(근거번호)	작성자	검토자	숭인자
0	2012.12.5	설계기준 체계 전면개정 (설계기준처-3537, 12.12.5)	신우재	석종근 고재운	김영우
1	2014.12.09	철도환기구 덮개설치 기준 제정	유재필	김대원 유승현	이동렬
2	2016.07.29	철도건설기준 개선 Master Plan수립(설계기준처-3693('15.12.28) 및 설계기준처-1585('16.06.09))에서 도출된 결과를 반영한 지침 개정 (설계기준처-2141, 2016.07.29)	문영기	손병두 김정호	김영하

목 차

1. 기초구조	1
2. 철근콘크리트, 프리스트레스트 콘크리트, 프리캐스트 콘크리트 구조	3
3. 조적식 구조	3
4. 강구조	3
5. 목구조	3
6. 가시설 구조	3
7. 철도건축물 구조설계의 조건	3
RECORD HISTORY	5

1. 기초구조

- (1) 건축구조기준(KBC 2009) 제4장에 따른다.
- (2) 지반조사는 「건축구조기준(KBC 2009)」 0402에 의한다.
- (3) 보링은 다음과 같이 수행한다.
- ① 보링은 특별히 명시하지 않는 한 로터리보링에 의한다.
- ② 보링의 배치는 <표 1>에 의한다.
- ③ 보링의 깊이는 <표 2>에 의한다.
- ④ 보링 시 표준관입시험을 하여야 한다.
- ⑤ 흙의 분류는 ASTM D-2487에 의한 통일 분류를 따르고 암반의 분류는 RMR(Rock Mass Rating)분류에 의한다.
- ⑥ 내진설계 대상인 경우 암반에 대한 전단파 속도 등을 조사하여야 한다.
- (4) 지반조사보고서에는 지반의 허용지지력 및 지하수위 등이 명시되어야 한다.

표 1. 보링의 배치

조사 대상	배치 간격	비고
단지조성, 매립지, 공항 등 광역부지	- 절토: 100~200m 간격 - 연약지반성토: 200~300m 간격 - 호안, 방파제등: 100m 간격 - 구조물: 해당구조물 배치기준에 따른다. - 개착구간: 100m 간격	대절토, 대형단면 등같이 횡단방향 의 지층구성 파악 이 필요한 경우는 횡방향 보링을 실시한다.
지하철	- 터널구간: 50~100m 간격 - 고가, 교량 등: 교대 및 교각에 1개소씩 - 절토: 절토고 20m 이상에 대해 150~200m 간격 - 연약지반성토: 100~200m 간격 - 교량: 교대 및 교각에 1개소씩	"
고속전철, 도로	- 터널(산악): 갱구분 2개소씩으로 1개 터널에 4개소 실시하며 필요시 중간부분도 실시함. 갱구분 보링 간격은 30~50m 중간부 간격은 100~200m 간격	"
건축물, 정차장, 하수처리장 등	- 사방 30~50m 간격, 지층의 변화가 심한 경우 사 방 10m이내, 최소한 3개소	

표 2. 보링의 깊이

조사 대상	깊이	비고
단지조성, 매립지 공항 등 광역부지	 절토: 계획고하 2m 연약지반성토: 연약지반 확인 후 견고한 지반 3~5m 호안, 방파제 등: 풍화암 3~%m 구조물: 해당구조물 깊이기준에 따른다. 	절토에서 기반암이 확인이 안 된 경우는 기반암 2m 확 인, 조사 공수 및 배치에 따 라 부분적으로 계획고 도달 전이라도 기반암 2m 확인하 고 종료할 수 있음

조사 대상	깊이	비고
지하철	- 개착구간: 계획고하 2m - 터널구간: 계획고하 0.5~1.0D - 고가, 교량 등: 기반암하 2m	확인 안 된 경우는 기반암 2m 확인 절토, 터널에서 기 반암이 확인 안 된 경우는 기반암 2m 확인
고속전철, 도로	 절토: 계획고하 2m 연약지반성토: 연약지반 확인 후 견고한 지반 교량, 기반암하 2m 터널(산악): 계획고하 0.5∼1.0D 	
전축물, 정차장, 하수처리장 등	- 지지층 및 터파기 심도하 2m	터파기 심도하 2m까지 기반 암이 확인 안 된 경우는 일 부 조사공에 대해 기반암 2m 확인

(5) 기초의 설계

- ① 기초의 설계는 원칙적으로 「건축구조기준」제4장(기초 구조) 및 「건축기초구조기준」 (대한건축학회)에 의한다.
- ② 기초의 형식은 지반조건, 상부구조의 조건, 선로근접부에서의 시공성, 경제성 및 주변의 영향을 고려하여 선정한다.
- ③ 선상역의 경우, 기초형식과 시공방법은 지반 조건과 노선 근접에서의 시공성에 따라 결정 되므로 다음의 사항을 검토한다.
- 가. 말뚝과 궤도와의 간격
- 나. 주변의 가선의 위치
- 다. 시공에 필요한 높이와 폭 등 공간
- 라. 지반의 붕괴성
- 마. 기초의 시공 여유 공간
- 바. 진동 및 소음에 의한 영향
- ④ 현장치기 콘크리트말뚝과 기성제 콘크리트말뚝은 지지기구, 수평강성도가 다르므로 혼용하지 않도록 한다.
- ⑤ 이종기초는 부동침하나 지진하중으로 다른 거동을 할 우려가 있으므로 사용하지 않 도록 한다. 부득이 하여 이종기초를 혼용할 경우는 침하성 및 지진 시 말뚝머리의 변위량을 파악하여 상부구조물에의 영향을 검토한다.
- ⑥ 기초는 연직력, 수평력 및 전도 등에 안전하게 설계한다.
- ⑦ 지반침하가 예상되는 지역에서 지지말뚝을 설계할 경우는 말뚝의 부마찰력에 대하여 검토한다.

2. 철근콘크리트, 프리스트레스트 콘크리트, 프리캐스트 콘크리트 구조

건축구조기준(KBC 2009) 제5장에 따른다.

3. 조적식 구조

건축구조기준(KBC 2009) 제6장에 따른다.

4. 강구조

건축구조기준(KBC 2009) 제7장에 따른다.

5. 목구조

건축구조기준(KBC 2009) 제8장에 따른다.

6. 가시설 구조

다음 사항에 대하여 가시설 설계(구조계산서 작성 포함)를 하여 공사 중 열차의 안전 운행을 확보한다.

- (1) 선로 인접공사 기초흙막이 가시설
- (2) 선상역사의 안전발판의 가시설
- (3) 역사구내 전체에 전차선의 보호캡 설치에 관한 사항
- (4) 경간 10m 이상 콘크리트 양생용 거푸집 및 동바리 시설

7. 철도건축물 구조설계의 조건

- (1) 강구조
- ① 강재의 최소두께

가. 주요 부품 : 강판 6mm 형강 6mm

나. 2차 부재 : 강판 5mm 형강 5mm

② 강재의 방청처리

선로의 상공에 노출되어 있는 구조용 강재는 원칙적으로 용융아연도처리 또는 내후성 강재(SMAW) 등의 재료를 사용한다.

- ③ 바닥판
- 가. 선로상부에 건립하는 선상역사 바닥판의 두께는 다음에 의한다.
- (가) 철근콘크리트 슬래브의 두께는 시공성 및 진동을 고려하여 200mm 이상으로 한다.
- (나) 프리캐스트 콘크리트 판의 두께: 60mm
- (다) 프리캐스트 철근콘크리트 슬래브의 두께: 90mm
- 나. 선로상부에 건립하는 선상역사 바닥판의 거푸집은 동바리를 설치하지 않아도 콘크리트의 타설과 양생이 가능한 거푸집(데크플레이트 등)을 사용한다.

- 다. 상판 하면의 피복 두께의 최소치는 다음에 의한다.
- (가) 거푸집용도의 데크플레이트를 쓰는 철근콘크리트: 25mm
- (나) 노출콘크리트의 슬래브: 40㎜
- (다) 프리캐스트 콘크리트: 30mm
- (3) 변형제한

부재의 변형은 다음에 나타난 값 이하로 제한한다.

- ① 수직변형
- 가. 일반보 선로의 상공 부분 L/500, 기타 L/300
- 나. 캔틸레버보 선로의 상공 부분 L/400, 기타 L/250 (L: 부재의 스팸)
- ② 수평변형 수평변형각: H/150 (H: 층고)
- (4) 진동 및 바닥가속도의 제한
- ① 진동의 제한

바닥 진동수와 변형의 제한 값은 <표 3>과 같다.

표 3. 진동의 제한 값(CEN EC 3/1)

구분	최소고유진동수(Hz)	한계변형의 합계(mm)
보행 바닥	3	28
리듬운동을 하는 바닥	5	10

② 바닥가속도의 제한

가. 허용범위

풍진동에 의한 바닥가속도는 ISO기준에 따라 1년 재현주기의 풍속 시 1%, 10년 재현주기의 풍속 시 1.5 % 이내로 한다.

나. 면진 및 제진공법

바닥가속도가 부재단면 및 강성의 조절 또는 구조시스템의 보완으로 허용범위 이내로 조절을 할 수 없을 경우에는 면진공법에 의한 조절을 검토하여야 한다.

- (5) 철도 시설물 구조검토
 - ① 역광장 시설물은 특히 지역의 풍하중에 대하여 안전을 확보하는 구조검토를 하고, 유지보수 및 경제성 등을 고려하여야 한다.
 - ② 안내사인물, 조명 등과 같은 시설물은 풍하중을 고려하여 설치하여야 한다.

(6) 건축부대 환기구 구조물

- ① 환기구 계획・설계
 - ⑦ 환기구 최소높이는 지면으로 부터 2m 이상으로 설치하는 것을 원칙으로 하되, 공중에 시각적으로 노출되는 환기구는 도시미관 등을 고려하여 투시형으로 설치할 수 있으며, 필요한 경우 출입문 및 시건장치를 설치할 수 있다.
 - ④ 배기용 환기구를 부득이 보도공간에 바닥형으로 설치할 경우, 최소 보도 유효폭을 확보해야 하고, 유입방지턱 높이는 20cm 이상 설치하여야 하며 지형조건과 노면유량을 고려하여야 한다.
 - © 환기구 덮개는 급작스러운 덮개 탈락이 발생하지 않도록 충분한 강도의 콘크리트 걸침턱에 덮개가 걸치도록 하는 구조로 한다.
 - ⑤ 도시미관, 장소명소화 등을 위해 환기구에 공공디자인 개념을 적용하는 것을 검토하여야 한다.

② 환기구 덮개 하중

- 환기구를 보도에 설치하여 보행인의 통행을 허용하는 경우 보행시설을 지지하는 덮 개 및 지지부재의 설계에는 $5 {
 m kN/m^2}$ 의 등분포 활하중이 작용하는 것으로 하며 이때 지지부재의 허용처짐은 $\frac{L}{360}$ 이하로 한다.
- ① 환기구 보도에 차량진입이 예상되는 경우에는 차량하중에 의한 단면검토를 하여야 한다.
- © 환기구 상단으로 보행인의 통행을 금지하는 경우에는 상부 덮개 및 지지부재 설계에 사용하는 등분포 활하중은 3kN/m²을 적용하며 지지부재의 허용처짐은 $\frac{L}{240}$ 이하로 한다.

③ 환기구 설계시 고려사항

- ⑦ 통행이 빈번하거나 가로수와 가까운 도로에 위치하여 가연성 물질의 투입이 예상되는 환기구에는 그물철망을 추가로 설치하여야 한다.
- ① 덮개는 외부인이 임의로 들어 올리지 못하도록 시건장치 설치 등의 조치를 하여야 한다.

RECORD HISTORY

- Rev.0(12.12.5) 철도설계기준 철도설계지침, 철도설계편람으로 나누어져 있는 기준 체계를 국제적인 방법인 항목별(코드별)체계로 개정하여 사용자가 손쉽게 이용하는데 목적을 둠.
- Rev.1('14.12.9) 최근에 발생된 "판교 테크노벨리 추락사고"를 계기로 우리공단의 철도 환기구 덮개설치 기준을 제정
- Rev.2('16.07.29)철도건설기준 개선 Master Plan수립(설계기준처-3693('15.12.28) 및 설계 기준처-1585('16.06.09))에서 도출된 결과를 반영한 지침 개정