

공 단 표 준 규 격 가스절연개폐장치(29kV)

(GAS INSULATED SWITCHGEAR-29kV)

KRSA-3007-R2

제정 2013. 02.01.

개정 2017.00.00.

확인 2016.05.11.

1. 적용범위 및 분류

1.1 적용범위

이 규격은 전기철도 급전구간에서 사용되는 SF₆ 가스압력이 3.0kg/cm².G 이하인 옥내용 29kV 가스절연개폐장치(SF₆ GAS INSULATED SWITCHGEAR : 이하 GIS라 한다)에 대하여 적용한다.

1.2 사용조건

1.2.1 정상사용조건

- (1) 주위온도는 최고 40[℃], 최저는 -25[℃], 이내로 한다.
- (2) 표고 1,000[m] 이하
- (3) 주위공기 오손이 현저하지 않은 장소

1.2.2 특수사용조건

1.2.1항에 규정한 이외의 자연환경 또는 계통상 특수한 사용조건은 필요시 별도로 규정한다.

1.3 분류

가스절연개폐장치의 종류 및 정격전압은 [표 1] 및 [표 2]와 같이 분류한다.

[표 1] GIS 종류

사용장소	절연체 종류	사용가스	봉입방식	상 수
옥내용	가 스	SF ₆ (6불화유황)	밀 폐	단상

[표 2] 정격전압의 표준치

공 칭 전 압[kV]	정 격 전 압[kV]
25	29

2. 인용표준

- IEC 62271-200(2011), KS C IEC 60850(2012) 가스절연 개폐장치
- IEC 62505-1(2009), IEC 62271-100(2012) 차다기(CB)
- IEC 62505-2(2009), IEC 62271-102(2013) 단로기(DS)
- IEC 62271-102(2013). IEC 62505-2(2009) 접지개폐기(ES)
- ES 5950-0006(2016), IEEE C57.13(2008) 변류기(BCT)
- ES 5920-0005 (2012), IEC 60099-4(2014) 피뢰기
- IEC 60480(2004), IEC 60376(2005), IEC 62271-4(2013) SF6가스
- IEC 62505-3-3, IEC 61869-3 (2011) 계기용변압기
- IEC 62497-1(2010.02) 철도적용 절연협조

3. 필요조건

3.1 재료

- (1) 사용재료는 KS(Korean Industrial Standards) 표시품 또는 동등이상이어야 한다.
- (2) 모든 자재, 설비, 장치 및 계통은 아래 조건하에서 성능저하나 오동작 없이 견딜 수 있도록 보장되어야 한다.

3.2 형태

- (1) 외형은 운전, 유지, 보수 등이 용이한 구조이어야 한다.
- (2) 가스절연계폐장치의 구조형상 및 치수는 제작도면에 의한다.

4. 구조

4.1 구조일반

- (1) GIS는 전기적, 열적, 기계적 특성이 우수한 재료를 사용하여 정상 운전 및 보수 점검이 용이한 구조로 설계, 제작되어야 하며 동일정격, 동일 구조의 제품은 호환이 용이하도록 한다.
- (2) GIS는 차단기, 3단 개폐기(단로기 및 접지개폐기), 모선, 계기용변압기, 변류기, 피뢰기 등을 조합하여 구획(Bay)을 구성하고 이것을 적정 배치접속하여 개폐장치를 구성한다. 단, 3단 개폐기는 하나의 접점과 하나의 조작기로 동작하는 메카니즘(Common Mechanism and Common Contact System)을 갖는 설비로 폐로-개로-접지의 3단 개폐기 능을 갖추어야 한다.
- (3) 충전부는 SF6 가스를 충진한 접지된 금속제 외함에 수납하고, 적당한 위치에 외함

(Enclosure)을 상호 연결하는 Cu재질의 접지 접속 도체가 설치되어 있어야 한다.

- (4) 외함(Enclosure)내의 가스누설 및 흡습을 최소로 하기 위하여 가스 기밀구조로 특별한 배려를 할 것이며 수분 및 분해가스를 흡착할 수 있는 흡착제를 필요한 개소에 설치해야 한다.
- (5) 온도변화, 조립시의 오차, 기초의 상대 부등침하등에 대처할 수 있도록 적당한 위치에 상기 변형을 흡수할 수 있는 설비를 갖추어야 한다.
- (6) 각 가스구획에는 반영구적 방압안전장치를 구비하여 내부 사고시 과도한 가스 압력 상승을 방지하여 외함의 폭발 및 타 기기에의 영향을 최소화시킬 수 있도록 하여야한다.
- (7) GIS 전 구간에 대하여 20kA, 1sec의 사고전류 통전에 충분한 cu재질의 공동 접지모선이 설치되며, 적절한 위치에 나경동 연선의 접지선을 연결할 수 있는 단자가 구비되어 주접지망과 연결되어야 한다.
- (8) GIS의 크기는 설치 및 운반을 용이하게 하기 위하여 bay당 전면폭은 600mm 이하, 설치높이는 3m이하. 깊이는 2800mm이하로 설계 제작 되어야 한다.

4.2 차단기

- (1) 고신뢰성, 장수명의 차단부를 가스용기에 내장시킨 구조로 장기간 고 신뢰성이 유지되는 구조여야 한다.
- (2) 차단부의 도전부는 충분한 차단 및 통전용량의 것이어야 한다.
- (3) 정격차단 용량에서 아크지속시간이 짧고, 차단시간이 3Cycle 이내로 계통을 안전하게 운전 할 수 있어야 한다.
- (4) 2극 일괄로 동작하는 조작 장치를 구비하고, 차단기의 투·개방 상태는 현장 조작제어 반내의 표시등 및 기계적 위치 표시에 의해 확인할 수 있어야한다.

4.3 3 단 개폐기(단로기 및 접지개폐기)

- (1) 3단 개폐기는 절연 성능이 우수한 SF₆ 가스에 내장되어 양질의 고체 절연물로 지지되어 있고, 개로상태에서 충전부와 충분한 절연내력을 가지며, 구성요소가 소형 단순화되어야한다.
- (2) 3단 개폐기는 현장조작 제어반 전면 및 이면에서 식별할 수 있어야 하며, 수동 조작이 가능하여야 한다.
- (3) 3단 개폐기는 개로상태에서 충전부와의 충분한 절연을 확보 할 수 있는 구조로 되어야 하며 단락시 등 운전 중에 발생하는 전자력, 중력 또는 진동 등에 의해 우발적인 개폐 동작을 하지 않는 구조이어야 한다.
- (4) 3단 개폐기는 GIS 모선 및 기기 내부 점검시, 안전을 위하여 주 회로를 접지할 수 있는 구조이어야 한다.

4.4 모선

상 분리형의 단일모선으로 구성하여야 한다.

4.5 변류기

- (1) GIS의 구조 및 사용에 적합하되 제특성은 ES-5950-0006 및 IEEE C57.13에 따르며, 주 회로의 절연 강도는 GIS 절연 강도에 따른다.
- (2) 부분방전 등으로 인한 기기열화가 발생하지 않는 구조이어야 하며, 변류비의 변환을 위한 권선비의 교체는 필요시 2차 회로인 단자대에서 이루어지도록 결선되어 있어야 한다.

4.6 계기용변압기

계기용변압기는 SF₆ 가스절연형을 표준으로 하며 기타 사항은 ES-5950-0005 및 IEC 61869-3에에 따른다.

4.7 피뢰기

- (1) 산화아연형 피뢰기(Gapless)를 표준으로 하며 제특성은 ES-5920-0005에 따른다.
- (2) GIS와의 접속은 Plug in Type 등을 적용한다.

4.8 SF₆ 가스 관리

- (1) GIS의 전기절연재료로 사용되는 SF₆ 가스는 IEC 60376, IEC 60480, IEC 62271-4에 따르며, 또한 SF₆ 가스압력이 대기압으로 되어도 GIS의 절연 내력은 상시운전 최고전압에 1분간 견디도록 설계되어 있어야한다.
- (2) 가스 구획은 가스의 관리를 용이하게 함은 물론 점검, 증설, 사고시 정지범위 등을 고려하여 운용상 지장이 없도록 구분하고 각 가스구획에는 아래의 설비가 설치되어 있어야한다.
 - 가. 온도 보상부 압력스위치
 - 나. 가스 보급구
 - 다. 수분 및 불순물 흡착장
 - 라. 가스 압력계
- (3) 온도 보상부 압력스위치 및 가스압력계는 점검이 용이한 곳에 부착하고 표시기 (Annunciator)는 현장조작감시반 (Local control panel)에 설치하여야 하며 중앙감시실 표시반에서도 감지 가능토록 접점을 인출할 수 있는 구조로 하여야 한다.

4.9 쇄정장치(Interlocks)

- (1) 차단기 등의 내부점검을 위해 회로를 분리하는 단로기는 우발적인 투입을 막는 구조이 어야 하며, 동 목적의 접지개폐기는 우발적인 개방을 방지하는 쇄정장치가 구비 되어 있어야한다.
- (2) 3단 개폐기 중 단로기는 관련되는 차단기 및 접지 개폐기가 개방되었을 때 조작 가능 하여야 하고 접지개폐기는 관련 차단기 및 단로기가 개방되었을 때 개폐 가능하도록 되어야한다.
- (3) 쇄정장치는 전기적 쇄정장치를 원칙으로 하되 접지개폐기와 이와 연동되는 단로기는 기계적 쇄정장치를 갖추고 있어야한다.

4.10 조작장치(전동스프링 방식)

- (1) 정격 스프링 축세 작용력에서 추가적인 MOTOR 구동 없이 차단기의 O-CO 연속동작이 가능하여야 한다.
- (2) 보수 점검시의 용이함을 위해 수동 LEVER로 CLOSING SPRING의 CHARGING이 가능하여야 한다.
- (3) CLOSING/DISCHARGING SPRING의 축세/소세 상태 표시를 위한 동작표시기를 구비하여야 한다.
- (4) 전동 스프링식 전동기의 정격전압은 DC 110[V]를 원칙으로 하고 KS C 4202, 4204에 의한다. 단, 현장여건에 따라 1 ≠ 220[V] 또는 3 ≠ 380[V]를 사용할 수 있다.

4.11 기기전지

- (1) GIS의 금속외피 부분은 접지 되어져야 하며 외피와 가대 및 용접부 등은 전기적으로 확실한 접속이 되는 구조이어야 하고, 배관류와 기타 필요한 곳은 순환전류 또는 사고전류에 의한 이상이 발생되지 않아야 한다.
- (2) 외함 탱크와 접지부스바 접속시 이종금속간 상대 전위차에 의한 부식을 억제하기 위하여 도금 등 처리를 하여야 한다.

4.12 외함(Enclosure) 및 현장조작감시반

- (1) GIS 외함 및 현장조작감시반은 견고하고 전기적, 기계적 특성이 우수한 재료를 사용하여야 한다.
- (2) 현장조작감시반은 GIS의 보호, 제어 및 조작회로 등을 수납하는 금속제 용기를 말하며 IEC62271-1의 5.13절 Table7에 의한 [표 3]에 규정된 보호등급을 갖추어야 한다.

[표 3] 보호등급

보호등급	도전부와 가동접점의 접근에 대한 보호	
IP4X	직경 및 날의 두께가 1.0mm 이상의 철사에 대한 보호정도	

- (3) GIS의 입출입단에는 작업시 선로의 충전 여부를 육안으로 확인 할 수 있는 장치를 구비하여야 한다.
- (4) GIS는 현장조작감시반 또는 원방 제어반에 의해 제어되어야 한다.
- (5) 현장조작감시반에는 가스밀도 감시기, 가스 주입구, 개폐 표시장치, 수동조작 핸들 삽입구, 동작 횟수계, 원방제어반과 연결할 수 있는 단자 등이 구비되어야 한다.
- (6) GIS의 차단기, 3단 개폐기에는 기기 상호간의 오조작을 방지하기 위한 쇄정장치가 구비 되어야 한다.(단, 정비, 시험시 등 필요한 경우에는 쇄정장치의 해제가 가능하여야 한다.)
- (7) 계기용변압기 및 변류기의 2차 회로에는 PLUG IN TYPE의 시험단자가 전면에 설치되어 있어야 한다.
- (8) 차단기 조작 개폐 스위치는 적색으로 표시되어야 한다.
- (9) GIS의 모선용, 차단기용 및 단로기용의 외함은 단시간전류 통전시 발생하는 전자 기계력이 극소화되도록 설계되어야 한다.
- (10) 독립된 가스구획으로 구성된 단위형 외함의 조합으로 각종개폐장치 회로를 구성하여 조립이 간편, 용이하여야 하며 가스 기밀의 신뢰성이 높아야한다.
- (11) 외함은 와전류에 의한 온도상승을 최소화하고, 팽창 및 진동에 의한 기기의 변형을 보상하기 위하여 필요 개소에 금속 주름관(Bellows)이 설치되어야 한다.
- (12) 현장조작제어반 내의 제어회로 배선은 ES-6110-008에 의한다.

4.13 인출입 부위 접속 구조

- (1) GIS와 인출 급전선의 연결은 케이블을 사용한 Plug-in Type으로 하며, Cable 접속부 점검시 고전압으로 부터의 접촉안전이 확보될 수 있는 구조이어야 한다.
- (2) 인출입 케이블 또는 모선은 수평 또는 수직 방향으로 인출입이 가능하도록 지지대를 설치할 수 있는 구조로 되어 있어야한다.

4.14 도장

- (1) 현장조작 감시반 및 지지프레임은 부착성 및 내식성이 우수한 Epoxy 분체도료로 도장 하며, 색상은 사용자의 요구에 따른다.
- (2) 가스배관은 가스구획의 용이한 식별을 위하여 노란색(Munsell No. 2.5Y 8/12)으로 도장하다.

5. 성 능

5.1 절연강도

GIS의 절연강도는 [표 4]와 같다.

[표 4] GIS의 절연강도

상용주파 내전 정격 [kV, rms]		. – –	뇌충격 [kV, 파고치]		
전압 [kV]	대지 및 차단기 극간	단로기 극간	대지 및 차단기 극간	단로기 극간	비고
29	95	110	200	220	

5.2 정격주파수

정격주파수는 GIS가 규정의 조건에 적합하도록 설계된 주파수를 말하며 60[Hz]로 한다.

5.3 정격전류

주회로의 정격전류는 정격전압, 정격주파수하에서 규정된 온도상승한도를 초과하지 않고 그 회로에 연속적으로 흘릴 수 있는 전류한도를 말하며 [표 5]을 표준으로 한다.

5.4 정격단시간 전류

- (1) GIS의 정격단시간전류(r.m.s)를 1초간 그 장치에 흘렸을 때 이상이 발생하지 않는 전류의 최대한도를 말하며 [표 5]을 표준으로 한다.
- (2) D.C 시정수는 45[ms]를 표준으로 하며, 정격단시간전류의 최대파고치는 정격단시간 전류의 2.6배로 한다.

[표 5] GIS의 정격 표준치

정격전압 [kV]	정격단시간전류 [kA, rms]	정격전류 [A]	비고
29	20	630A, 1250A, 2000A	

5.5 온도상승

- (1) 주위온도 40℃를 넘지 않을 때 GIS 각 부분의 온도상승은 IEC 62271-1의 Table 3에 규정된 허용하도를 초과하지 말아야 한다.
- (2) IEC 62271-1 Table3에 규정되지 않은 GIS내 구성요소의 온도상승은 그 구성요소의 표준규격에 합당한 허용한도를 초과하지 말아야 한다.
- (3) 접근할 수 있는 외부표면의 온도상승은 30K를 초과하지 말아야 하며, 접근할 수 있는

외부표면이 운전중 접촉할 필요가 없을 때는 온도상승한도가 40K까지 증가되어도 좋다.
(4) 고압 개폐기기 및 제어기기의 여러 부품, 재질 및 절연물에 대한 온도와 온도 상승한 계는 [표 6] 와 같다.

[표 6] 온도상승의 허용값

		최 대 값
H 포 기기 기시미시 도기		주위온도가 40[℃]를
부품, 재질, 절연물의 특성	온도[℃]	초과하지않은
		곳에서의 온도상승(K)
1.접 점		
나동 또는 나동합금		
-공기 중	75	35
-SF ₆ 중	105	65
-유 중	80	40
은 도금 또는 니켈도금		
-공기 중	105	65
-SF ₆ 중	105	65
-유 중	90	50
엷은도금		
-공기 중	90	50
-SF ₆ 중	90	50
-유 중	90	50
2.접속, 볼트 또는 동등한 방법		
나동, 나동합급 또는 나알루미늄합금		
-공기 중	90	50
-SF ₆ 중	115	75
-유 중	100	60
은 도금 또는 니켈도금		
-공기 중	115	75
-SF ₆ 중	115	75
-유 중	100	60
주석도금		
-공기 중	105	65
-SF ₆ 중	105	65
-유 중	100	60
3. 나사 또는 볼트로 외부 도체와 접속되는 단자		
-나 도 체		
-은, 니켈 또는 주석도금	90	50
-다른 도금	105	65

	최 대 값		
부품, 재질, 절연물의 특성	온도(℃)	주위온도가 40℃를 초과하지않은 곳에서의 온도상승(K)	
4. 유입 개폐 장치용 기름	90	50	
5.스프링 기능을 하는 금속 부품	_	_	
6.절연체로 사용되는 물질 및 다음 등급의 절연물과 접촉하는 금속부분			
-Y	90	50	
-A	105	65	
-E	120	80	
-В	130	90	
-F	155	115	
-에나멜 : 기름이 주재료인 것.	100	60	
합성 에나멜	120	80	
-H	180	140	
-C 다른 절연 물질	_	-	
8. 기름과 접촉하는 모든 금속 또는 절연물(접촉 제외)	100	60	
9. 액세서리 부품			
-정상 조작시 접촉이 예상되는 부품	70	30	
-정상 조작시 접촉이 없는 부품	80	40	

5.6 정격 조작전압 및 제어전압, 가스압력

(1) 정격조작전압 및 제어전압의 변동범위는 [표 7]와 같다.

[표 7] 정격조작 및 제어전압

장치 및 기구별		정 격 치	변 동 범 위	
조작	전동스프링조작	DC 110V 또는	투입 : 정격치의 85~110%	
장치	신당스트당소식	AC 1Φ 220V, 3Φ 380V	트립 : 정격치의 70~110%	
제어	ㅂフ리게시 ㄷ	DC 110V	투입 : 정격치의 85~110[%]	
장치	보조릴레이 등	AC 1Φ 220V	트립 : 정격치의 70~110[%]	

〈비고〉

- 1. 조작장치 : 개폐기의 가동접촉부를 직접 동작시키기 위해 필요한 구동력을 발생시키고 전달하는 장치.(예 : 직결모터, 스프링조작용 모터, 공압/유압용 모터 등)
- 2. 제어장치 : 조작장치에 의한 구동력 등 조작에너지를 전기적인 신호로 제어할 수 있는 장치(예 : 보조 Relay, 램프 등)
- 3. 조작전압 : 조작장치에 인가되는 전압을 말하며 투입의 경우 투입조작전압, 개방의 경우 개방조작전압 이라함.

(2) 정격가스압력은 [표 8]과 같다

[표 8] 정격가스 압력

정격전압 [kV]	정격가스압력 [kg/cm̊.G]	비고
29	사용자와 제작사간의 협의에 따른다	

5.7 주회로의 절연

- (1) 각 기기는 IEC62505-1, IEC62505-2, IEC62447-1에 명시되어 있는 내전압값에 견디어야 한다.
- (2) GIS의 모든 보조회로는 충전부와 대지간에 2,000[V] 상용주파 전압을 인가하여 1분간 견디어야 한다.

5.8 접지개폐기

모든 접지개폐기는 정격단시간전류 통전능력을 갖추어야 한다.

5.9 외함(Enclosure)

- (1) GIS의 모든 외함은 이상상태의 가스압력은 물론 단시간 전류로 인한 내부 아크를 IEC 62271-200의 규정시간까지 견딜 수 있도록 제작되어야 한다.
- (2) 상시 가스가 밀봉되는 부분은 IEC 62271-1의 6.8항(Tightness test) 및 Annex E를 만족할 수 있는 구조로 설계, 제작되어야 하고 상시 가스로 밀봉되는 부분은 가스 누기량이 연가 0.5[%] 이내로 되어야 한다.

5.10 내진대책

특별한 요구가 없을시 GIS는 지진강도 0.154[g](6.3[M]) 이상의 강도에 견디도록 설계 및 제작되어야 한다.

5.11 예방진단용 센서

- (1) GIS 구성품의 열화 진행상태를 상시 원격으로 감시 및 진단할 수 있는 부분방전감시(외장형 UHF센서), 가스밀도계 및 피뢰기의 열화를 감시 할 수 있는센서를 취부하여 납품하여야 한다.
- (2) 예방진단용 센서는 IEC 61850 프로토콜을 이용하여 상위 분석시스템과의 통신이 가능하여야 한다.

6. 검사와 시험 및 품질보장

6.1 검사

- (1) 구조검사
- (2) 외관검사

6.2 시험의 종류

시험은 형식시험, 검수시험 으로 나누며 각 시험은 아래와 같다.

6.2.1 형식시험

초기개발 등 제품의 품질확인 및 제작자의 품질유지능력을 인정하기 위한 것으로 시험 및 검사항목에 대한 판정은 공인시험 기관에서 시행한 공인 시험성적서에 의한다.

6.2.2 검수시험

형식시험에 합격한 자재에 한하여 자재 납품 시 시행한다.

6.2.3 시험항목

[표 9] 시험 및 검사항목

시험 및 검사항목	인정	검수	시험 방법
1. 구조외관검사	0	0	6.4.1.1항
2. 전기적절연시험			6.4.1.2항
가. 뇌충격내전압시험	0		
나. 상용주파내전압시험	0	0	
다. 부분방전시험	0	0	
라. 보조회로의 절연시험	0	0	
마. 확인시험	0		
3. 온도상승시험	0		6.4.1.3항
4. 주회로저항측정	0	0	6.4.1.4항
5. 단시간전류시험	0		6.4.1.5항
6. 차단기의 투입 및 차단능력시험			6.4.1.6항
가. 단락투입차단시험	\circ		
나. 탈조차단시험	\circ		
다. 충전전류 차단시험			
1) 선로충전	0		
2) 케이블충전	0		

시험 및 검사항목	인정	검수	시험 방법
7. 기계적동작시험(대기온도조건)			6.4.1.7항
가. 차단기	0	0	
나. 3단 개폐기(단로기 및 접지개폐기)			
8. 기계적동작시험(내환경조건)			
가. 차단기	*		
나. 3단 개폐기(단로기 및 접지개폐기)	*		
9. 보조회로의 보호등급 확인시험	\circ		6.4.1.8항
10. 외함시험(파열압력 또는 비파괴압력)	0		6.4.1.9항
11. 내부고장시 아크상태시험	0		6.4.1.10항
12. 외함압력시험	0	0	6.4.1.11항
13. 보조기기(Sequence)시험	0		6. 4 .1.12항
14. 절연저항 시험	0	0	6.4.1.13항
15. 기밀시험	0		6.4.1.14항
16. BCT 시험	0	0	6.4.1.15항
17. P.T 시험	0	0	6.4.1.16항
18. 피뢰기시험	0	0	6.4.1.17항
19. 소음시험	0	0	6.4.1.18항
20. LOCAL CONTROL PANEL 시험	0	0	6.4.1.19항
21. 내진시험	*		
22. 진단센서 시험		0	6.5.2.11항

〈비고〉

- 1. ※ 표시 항목은 필요시 발주자와 협의 후 실시한다.
- 2. 국산개발품이 아닌 계기용변압기, 피뢰기 등은 제작사 또는 공인기관에서 시행한 시험성적서 제출로 대신할 수 있다.
- 3. 시험시 허용오차는 IEC 62271-1의 Table F의 규정을 따른다.

6.3 시험방법 및 일반사항

- (1) 시험방법 적용상 문제가 있을 시는 사용자와 제작자간의 협의에 의한다.
- (2) 시험은 GIS의 전체조립시험으로 시행하여야 한다.
- (3) 이미 성능이 검증된 단위구성기기에 대하여 구성기기 시험의 일부 또는 전체를 면제할 수 있다.
- (4) 단위 구성기기의 불량시에는 제작사와 사용자간 협의에 따라 구성기기별로 1회에 한하여 재시험할 수 있으며, 이 경우 재시험 범위는 제작사와 사용자간 협의에 따른다.
- (5) 검수 및 현장시험의 세부내용은 ITP/ITC에서 따로 정한다.

6.4 시험방법

6.4.1 형식시험

6.4.1.1 구조 및 외관검사

각부의 구조 및 치수의 승인도면과 일치여부를 검사하고, 본체의 외부 도장상태 및 명판 등의 부착물 상태를 육안 검사한다.

6.4.1.2 전기적 절연시험

전기적 절연시험의 각종시험은 뇌충격 내전압 시험은 IEC 62271-1의 6.2.7.3항, 상용주파 내전압 시험은 IEC 62271-1의 6.2.7.1항, 부분 방전 시험은 IEC 62271-1의 6.2.9항, 보조회로 절연 시험은 IEC 62271-1의 6.2.10항 0기압 AC상용주파 내전압은 운전전압인 29[kV]에 1분간 시행한다. 최대 허용 부분방전량의 인정시험치 5[pC] 이하를 원칙으로 한다.

6.4.1.3 온도상승시험

온도상승시험은 IEC 62271-1의 6.5항에 따른다.

6.4.1.4 주회로 저항 측정

주회로 저항 측정은 IEC 62271-1의 6.4.1항에 따른다.

6.4.1.5 단시간 전류 시험

단시간 전류 시험은 IEC 62271-1의 6.6항에 따른다.

6.4.1.6 투입 및 차단 능력시험

단락 투입 차단 시험은 IEC 62505-1의 7.8~7.13항, 케이블 충전 전류 차단시험은 IEC 62505-1의 7.15.5.3항, 선로 충전 전류 차단 시험은 IEC 62505-1의 7.15.5.2항, 탈조 시험은 IEC 62505-1의 7.14항에 따른다.

6.4.1.7 기계적 동작시험(대기온도조건)

- (1) 차단기의 기계적 동작시험은 IEC 62505-1의 7.7.2항에 따른다.
- (2) 3단 개폐기의 기계적 동작시험은 IEC 62505-2의 7.3항의 CLASS 2을 적용하여 단로기 사용등급은 3,000회로 한다.

6.4.1.8 기계적 동작시험(내환경조건)

차단기 시험방법 및 결과는 ES 5925-001 6.2.9항에 의하며, 3단 개폐기의 시험방법 및 결과는 IEC 62271-102 6.104항에 따른다.

6.4.1.9 보조회로의 보호등급 확인시험

보조회로의 보호등급 확인시험은 IEC 62271-1의 6.7.1항에 따른다.

6.4.1.10 외함시험

외함시험은 IEC 62271-200의 6.103항에 따른다.

6.4.1.11 내부고장시 아크상태시험

내부고장시 아크상태 시험은 IEC 62271-200의 6.106항에 따르며, 규정시간은 발주자와 협의에 따른다. 단, 환경문제로 인하여 SF₆ 가스 대신에 압축공기를 충진한 상태에서 시험하거나 수압시험으로 대체할 수 있다.

6.4.1.12 외함 압력시험

외함압력시험은 IEC 62271-200의 7.103항에 따르며, 제작자의 시험성적서로 대체할수 있다.

6.4.1.13 보조기기시험

보조기기의 시험은 IEC 62271-200의 7.104항에 따른다.

6.4.1.14 절연저항시험

절연저항시험은 DC 500[V] 메거를 사용하여 주회로는 1,000[MΩ] 이상, 보조회로- 대지간은 2[MΩ] 이상이어야 한다.

6.4.1.15 기밀시험

기밀시험은 IEC 62271-1의 6.8항에 따른다.

6.4.1.16 변류기 시험

변류기 시험은 ES-5950-0006 또는 ANSI C57.13에 따르며, GIS 외함 외부에 설치하여 사용되는 경우 임펄스 및 상용주파내전압시험과 부분방전시험은 생략한다.

6.4.1.17 계기용변압기 시험

계기용변압기 시험은 ES-5950-0005 또는 IEC 60044-2에 따른다.

6.4.1.18 피뢰기 시험

피뢰기 시험은 ES-5920-0005에 따른다.

6.4.1.19 소음시험

소음시험은 NEMA SG-4에 따른다.

6.4.1.20 LOCAL CONTROL PANEL 시험

LOCAL CONTROL PANEL 시험은 ES-6110-0008의 5.1 ~ 5.5를 따른다.

6.4.1.21 내진시험

내진시험은 IEC 62271-207에 따른다.

6.5.2 검수시험

6.5.2.1 구조 및 외관검사

시험방법 및 결과는 6.4.1.1에 의한다.

6.5.2.2 전기적 절연시험

시험방법 및 결과는 6.4.1.2에 의한다.

6.5.2.3 주회로저항측정

시험방법 및 결과는 IEC 62271-203의 7.3항에 의한다.

6.5.2.4 기계적 동작시험(대기온도조건)

시험방법 및 결과는 6.4.1.7에 의한다.

6.5.2.5 외함압력 시험

시험방법 및 결과는 6.4.1의 12에 의한다.

6.5.2.6 절연저항 시험

시험방법 및 결과는 6.4.1.14에 의한다.

6.5.2.7 BCT 시험

시험방법 및 결과는 6.4.1.16에 의한다.

6.5.2.8 P.T 시험

시험방법 및 결과는 6.4.1.17에 의한다.

6.5.2.9 피뢰기시험

시험방법 및 결과는 6.4.1.18에 의한다.

6.5.2.10 LOCAL CONTROL PANEL 시험

시험방법 및 결과는 6.4.1.20에 의한다.

6.5.2.11 진단센서 시험

진단센서 시험은 공단 ITP/ITC에 따른다.

7. 표시 및 포장

7.1 표시

- (1) 내부표시 : 제품의 사용상 지장이 없는 곳에 쉽게 지워지지 않는 방법으로 품명, 제작년월, 제작자명 또는 그 약호 등을 표시하여야 한다.
- (2) 외부표시 : 외부 표장 표면의 적당한 곳에 품명, 제작년월, 제작자명 또는 그 약호, 수량을 표시하여야 하며, 기타 필요한 추가사항은 인수·인도 당사자 간의 협의에 따라 별도로 정할 수 있다.

7.2 포장 및 운송

포장 방법은 KS T 1002에 의하며 운송 등 세부사항은 인수·인도 당사자 간의 협의에 따른다.