

공단 표준규격 직·교류 무정전 전원장치

(Uninterruptible Power System)

KRSA-3103-R0

제정 2017. 03. 31.

개정 . .

확인 . . .

1. 적용범위 및 사용조건

1.1 적용범위

이 규격은 전철변전소 등에 설치되어 기기제어 등에 전원을 공급하는 옥내용 직·교류 무정전 전원장치(Uninterruptible Power System) (이하 무정전 전원장치)에 대하여 적용한다.

1.2 사용조건

1.2.1 정상사용조건

- (1) 주위온도는 최고 40[℃], 최저는 -25[℃] 이내로 한다.
- (2) 표고 1.000[m] 이하
- (3) 주위공기 오손이 현저하지 않은 장소

1.2.2 특수사용조건

1.2.1항에 규정한 이외의 자연환경 또는 계통상 특수한 사용조건은 필요시 별도로 규정한다.

1.3 분류

무정전 전원장치 및 축전지반은 [표 1] 및 [표 2]와 같이 분류한다.

[표 1] 무정전 전원장치

입력	출 력						
	교류			직류			
	지 이	용량		7] ()	전류		
	전압	변전소	변전소외	전압	변전소	변전소외	
3∅380V	220V	10kVA	5kVA	DC 110V	150A	100A	

[※] 인버터 바이패스 입력은 1∅220[V]를 기준으로 하되 현장여건에 따라 3∅220[V]를 공급할 수 있다.

[표 2] 축전지반

구 분	변전소	변전소외
형 식	장수명 무보수 밀폐 고정형 (VGS형)	장수명 무보수 밀폐 고정형 (VGS형)
용 량	300AH/10h	200AH/10h
방전시간	2시간	2시간
정격전압	2V/CELL	2V/CELL
종지전압	1.75V/CELL	1.75V/CELL
셀 수	54	54
설 치	큐비클 내장	큐비클 내장

2. 인용표준

- KS C 4310(2002) 무정전 전원 장치
- KS C 2620(2016 확인) 동선용 압착단자
- KS C 2625(2011 확인) 공업용 단자대
- KS C 8518(2013 확인) 밀폐 고정형 납축전지
- KS D 3503(2016) 일반 구조용 압연강재
- KS D 5530(2014 확인) 구리 버스 바
- ES-6110-0008(2009) 배정반
- KS C IEC 60255-5(2013 확인) 계전기-파트 5 : 측정 계전기 및 보호기기의 절연협조-요구조건 및 시험 IEEE 383(2003) IEEE standard for qualifying class IE electrical cables and field splices for nuclear power generating stations

3. 필요조건

3.1 재료

- (1) 사용재료는 KS(Korean Industrial Standards) 표시품 또는 동등이상이어야 한다.
- (2) 모든 자재, 설비, 장치 및 계통은 아래 조건하에서 성능저하나 오동작 없이 견딜 수 있 도록 보장되어야 한다.

3.2 형태

- (1) 외형은 운전, 유지, 보수 등이 용이한 구조이어야 한다.
- (2) 무정전 전원장치의 구조형상 및 치수는 제작도면에 의한다.

3.3 구 성

- (1) 입력 변압기
- (2) 정류부
- (3) 인버터부
- (4) 인버터 변압기
- (5) 동기절체 스위치부
- (6) 입·출력단 EMC 필터
- (7) 직류전압보상장치(SID)
- (8) 유지보수용 차단기
- (9) 입·출력단 서지보호기(SPD)
- (10) 계측, 운영 및 제어패널 등
- (11) 축전지반
- (12) 수직자립형으로 양측면은 고정형 강판, 상면은 덮개로 덮여 있어야 하며, 전·후면은 개방 가능한 힌지(Hinge)형 강판으로 구성한다.

3.4 제조 및 가공

3.4.1 외함

3.4.1.1 재질

일반 구조용 압연강재 KS D 3503의 SS400 또는 이와 동등 이상의 재질을 사용하여 제작한다. 전·후면 도어 철판의 두께는 3.2[mm]로 하고 기타 외함의 골조는 2.3[mm] 이상의 철판 또는 "ㄱ" 형강으로 구성되며 보강대는 2.3[mm] 이상의 철판을 사용하여야 하며 패널 및 Bracket류는 1.0[mm] 이상의 철판을 사용하여야 한다.

3.4.1.2 크기

 $(W)1,000mm \ x \ (D)1,200mm \ x \ (H)2,350mm$

3.4.1.3 일반구조

- (1) 전면 상부에는 명칭을 나타내는 명판을 취부 하여야 한다.
- (2) 전면의 계측 및 보호용 기기 상부에는 해당 기기명칭을 취부 하여야 한다.
- (3) 배전반 문은 90°이상 개폐 가능한 구조로 하고, 내측에는 보호카바를 설치하여 문을 열었을 때 충전부에 접촉되지 않도록 한다. 또한 문 후면에는 도면 관리함을 설치하여야 한다.
- (4) 함 상단에 운반용 인양고리를 취부하고 하단에 접지선 접속터미널을 취부하며,

기초볼트로 고정할 수 있는 구조로 한다.

- (5) 찬넬 베이스와 앵커 볼트로 고정되고 인접배전반과도 볼트 연결이 가능 하여야 한다.
- (6) 부스바는 KS D 5530에 규정하는 고도전율의 전기동으로 만들고 부식에 대하여 적절히 보호되어야 하며, 승인된 애자로 단단히 지지되어야 한다.
- (7) 과열에 의한 소자 보호를 위하여 24시간 동작하여도 무리가 없는 환풍기를 설치하여야 한다.

3.4.1.4 조명

- (1) 배전반 내부에는 이면점검 및 각종 작업이 용이하도록 조명등을 전·후면 상부에 설치하여야 한다.
- (2) 반내 조명은 문 개폐에 따라 자동 점멸되어야 하며, 점멸에 의해 발생되는 전자파 노이즈로 전기 누전경보기 및 계측기 등이 이상동작을 하여서는 안 된다.

3.4.1.5 이면배선

- (1) 배전반 이면에 사용하는 전선은 IEEE 383 시험규격에 적합한 600[V]급 난연성 절연 전선 또는 동등이상의 전선을 사용하여야 한다.
 - (a) 변류기(CT) 및 계기용변압기(PT) 2차 회로용 전선 : 4.0[mm] 이상의 동연선
 - (b) 전력 및 접지관련 회로용 전선 : 6.0[mm] 이상의 동연선
 - (c) PCB 제어용 전선 : 0.75[mm] 리본케이블 또는 0.5[mm] 이상의 동연선
 - (d) 기타 회로용 전선 : 2.5[mm] 이상의 동연선
 - (e) 배선의 단말에는 적당한 치수의 환형 압착단자 또는 슬리브형 압착단자를 사용하여 점검이 용이하도록 마크밴드 및 Collar Tube를 취부하여야 한다. 단, 압착단 자는 공인기관의 인증을 받은 제품이거나 KS C 2620 규격에 적합한 것이어야 한다.

(2) 배선의 색상

[표 3] 배선의 색상

회 로	CT	PT	AC	DC	접지	통신
색 상	녹	적	항	청	흑	갈

(3) 모선의 색상

[표 4] 모선의 색상

교류회로	A상	B상	C상	N상		
业开对上	흑 적		청	백		
직류회로	P상		N상			
	<u></u> 적		청			

(4) 모선의 배열

[표 5] 모선의 배열

구 분		좌로부터	위로부터	가까운 것 부터	
교 류	단상 1상,N상,2상		1상,N상,2상	1상,N상,2상	
	3상	A상,B상,C상,N상	A상,B상,C상,N상	A상,B상,C상,N상	
직 류		P상, N상	P상, N상	P상, N상	

(5) 배전반의 이면배선 및 이것에 준하는 배선은 PVC 덕트를 사용하여야 하며, 부득이 한 경우에는 다발 배선을 한다.

(6) 배선지지

- (a) 단자간의 배선은 선 Band로 묶고 배선의 고정부에서는 금속부분이 배선을 직접 누르지 않도록 지지한다.
- (b) 배선의 분기는 반드시 단자에서 행해야 한다.
- (c) 배선의 단자접속은 단선, 접촉불량, 탈락 등이 생기지 않도록 하여야 한다.

(7) 단자대(Terminal Block)

- (a) 단자대는 국제시험기관 인정기구협의회의 상호인정협정에 서명한 인정기구로 부터 인정받은 공인시험기관의 인정을 받은 제품이거나 KS C 2625의 나사조임 단자대 또는 나사 없는 단자대(Push-In Type)이어야 하며 불량단자 교체시개별교체가 용이한 구조이어야 한다. 또한 각 단자대는 10[%] 이상의 예비용단자를 구비하여야 한다.
- (b) 주회로 개폐기의 연속 정격전류 이상의 것을 사용하여야 하며 단자대 개체 번호 및 배선의 단자기호를 기입한다. 특히 계기용 변압·변류기 단자대는 전용 단자 대를 설치하고 각 단자간 접촉이 일어나지 않도록 그 간격이 충분하여야 한다.

(8) 접지모선 및 접지

- (a) 배전반의 접지모선은 6t× 40[mm]의 동대를 사용하여 반 하부에 설치하여야 한다.
- (b) 접지단자를 구비하여 제어케이블의 실드를 접지시킬 수 있는 구조로 한다.
- (9) 반 내부에 배열되는 전선을 지지결속 시킬 수 있는 지지대를 설치하며 접지용 케이블은 견고하게 취부한다. 또한 반 하부는 케이블 입상이 용이하며 습기 침투를 방지할 수 있는 구조로 한다.

3.4.1.6 도장

외관도료의 색상은 Munsell NO. 5Y 7/1로 한다.

3.4.2 무정전 전원장치

(1) 충전/인버터부는 IGBT와 동등이상의 성능을 가진 전력 반도체소자를 사용하여야 한다.

- (2) 정류부와 인버터부는 한개의 시스템으로 구성 되어야 하며, DC 출력부에는 SID (SILICON DROPPER)를 설치하여야 한다.
- (3) 정류부의 반도체를 보호하기 위하여 속단(Fast Acting) FUSE를 부착한다.
- (4) 변전소 및 급전구분소용은 시스템 신뢰도를 향상시키기 위하여 동일용량 UPS(2대)의 출력을 COMMON하여 부하를 균등 분담하는 분산제어형 병렬운전으로 구성되어야 하며 출력부하 LINE은 하나로 구성되어야 한다.
- (5) 주변 설비(컴퓨터 및 전자장비 등)에 전자기적 간섭을 주거나 영향을 받지 않도록 입·출력 측에 EMC FILTER를 설치하다.
- (6) 주요 전력용 변압기류의 절연재료는 "H"종을 사용하여야 한다.

3.4.3 축전지반

- (1) KS C 8518 및 친환경제품(환경마크) 인증을 받은 장수명 밀폐 고정형(VGS형) 납축전지를 사용하여야 한다.
- (2) 평상시 부동충전 상태이며, 축전지가 방전 후에도 정전류 정전압 방식으로 충전되어야 하며, 축전지의 충전이 충분히 될 수 있도록 일정한 전압으로 충전상태를 항상 유지하여야 한다.
- (3) 전조와 커버는 난연성 및 방폭형 재질로 화재, 충격에 강하고 누액이 없는 재질이어야 한다.
- (4) 함 내부에 축전지 취부대를 설치하고 점검 및 교체가 용이하여야 한다.
- (5) 함 전면 도어에 DC-V/A METER를 설치하여야 한다.
- (6) 품질의 신뢰성을 위해 축전지는 반드시 자체 공장에서 모든 제작공정이 이루어진 제품이어야 한다.

3.5 성능

3.5.1 성능 및 특성

무정전 전원장치의 성능 및 특성은 [표 6]을 만족하여야 한다.

[표 6] 성능 및 특성

ठॅंरे-	목	성 능 및 특 성
	냉 각 방 식	강제 풍냉식
일 반 적	사 용 정 격	100[%] 연속 사용
	ST/SW 절체방식	무순단 동기절체
사 항	변압기 절연계급	H 종
	충전/인버터부 사용소자	IGBT 및 동등이상

	항	목	성능 및 특성					
		역 률	0.99 Lag 이상					
	입력	상 수	3상 3선식					
		정 격 전 압	AC 380[V]					
		상 수	1상 2선식					
전		정 격 전 압	AC 220[V] / DC 110[V]					
		전압 안정도	± 2[%] 이내					
기		과도 전압변동	± 5[%] 이내					
	출력	과도 응답속도	40[ms] 이내 (± 2[%] 이내로 복귀기준)					
적	골역	출력전압조정	± 5[%]					
		파 형 왜 율	THD 3[%] 이하 (LINEAR 부하 100[%] 기준)					
특		과부하 내량	125[%] 10분간					
		전 류 제 한	110[%] (90~125[%] 조정가능)					
성		역 률	0.8 Lag 이상					
	동기절체	동기절체 시간	4 [ms] 이내					
	스위치	절 체 조 건	1) 인버터 비정상 시 2) 출력 과부하 시 3) 직류 저전압 시 4) 수동 절체 시					
	SID 출력전압	부동 충전 시	± 5[%] 이내 (전 부하 시)					
종합			트랜스 및 리액터류 : 125 DEG. 이하					
등업 본 특성		온도상승	전력 반도체 소자류 : 80 DEG. 이하					
一一 つ			기타 스위치류 : 40 DEG. 이하					
	소	<u>о</u> п	65[dBA] 이하					
	ট্র	율	86[%] 이상 (SID부 제외 시)					

3.5.2 내진대책

특별한 요구가 없을시 지진강도 0.154[g](6.3[M])의 강도에 견디도록 설계 및 설치되어야 한다.

4. 검사 및 시험

4.1 검사의 분류

- (1) 구조검사
- (2) 외관검사

4.2 시험방법

검수 및 현장시험의 세부내용은 공단 표준 ITP/ITC에서 따로 정한다.

4.2.1 구조 및 외관검사

각 부의 구조 및 치수의 승인도면과 일치여부를 검사하고, 본체의 외부 도장상태 및 명판 등의 부착물 상태를 육안 검사한다.

4.2.2 절연저항시험

KS C IEC60255-5의 6.2.2(절연저항 측정)을 따른다.

4.2.3 상용주파내전안시험

KS C IEC60255-5의 6.1.4 절연내력시험(교류 상용주파 고전압시험)을 따른다.

4.2.4 과부하시험

정격전류의 125[%]로 10분을 인가하여 무정전 전원장치에 이상이 없어야 한다.

4.2.5 상용전원 절체시험

정격 교류입력전압범위와 직류입력전압범위에서 UPS에서 상용전원으로 절체시키며 이때 동기절체시간이 4[ms] 이내이어야 한다.

4.2.6 출력전압 안정도 측정

- (1) 정격 교류입력전압, 정격 교류출력전압 및 주파수를 설정한 다음 100[%] 부하를 인가한다.
- (2) 안정된 출력 부하변동(0-50-100[%]), 규정된 교류입력전압 변동 범위 내에서 출력 전압을 측정 기록한다.
- (3) 출력전압 안정도[%] = [출력전압(측정) 출력전압(설정)] / [출력전압(설정)] × 100
- (4) 출력전압 안정도가 ± 2[%] 이내이어야 한다.

4.2.7 출력주파수 안정도 측정

- (1) 정격 교류입력전압, 정격 교류출력전압 및 주파수를 설정한 다음 100[%] 부하를 인가한다.
- (2) 상기 조건 하의 정전상태에서 출력주파수를 측정 기록한다.
- (3) 출력주파수 안정도[%] = [출력주파수(측정) 출력주파수(설정)] / [출력주파수(설정)] × 100
- (4) 출력주파수 안정도가 ± 0.5[%] 이내이어야 한다.

4.2.8 출력전안 가변범위 시험

출력전압 설정용 가변저항기를 조작하여 출력전압이 정격전압의 ± 5[%] 범위에서

조정여부 확인

4.2.9 소음 측정

(1) 출력 100[%] 부하, 규정된 교류입력 전압범위, 규정된 직류출력 전압범위(부동충 전전압), 장비의 소음과 주위소음의 차가 10[dBA] 미만인 조건에서 실시한다.

(2) 장비로부터 규정된 거리 규정된 높이와 전면에서 측정 기록한다.

(거리 : 1.5[m], 높이 : 1.5[m])

(3) 동일한 위치에서 장비의 운전을 정지하고 주위소음(암소음)을 측정한다.

(4) 산출 : 장비의 소음과 주위소음의 차가 10[dBA] 미만일 경우 아래 표와 같이 보 정하여 기록한다.

장비의 소음과 암소음의 차이	3	4	5	6	7	8	9	10이상
보정치	-3	-2	-2	-1	-1	-1	-1	0

(5) 산출된 측정치가 65[dBA] 이하이어야 한다.

4.2.10 효율 측정

100[%] 부하 인가 후 측정된 출력의 효율은 86% 이상이 되어야 한다. (단, SID 제외)

4.2.11 파형왜율 측정

- (1) 정격 교류입력전압, 정격 직류전압, 정격 교류출력전압 및 주파수를 설정하고 100[%] 부하를 연결한다.
- (2) 다음의 안정된 조건에서 출력 파형왜율을 측정 기록한다.
 - (a) 안정된 출력 부하변동 (부하율 : 0-50-100[%])
 - (b) 정격 교류 입력전압 범위 내에서 변동
- (3) 파형왜윸이 3[%]이내 이어야 한다.

4.2.12 종합동작

50[%]의 부하에서 상태표시, 경보내용 등이 정상 동작여부 확인

4.2.13 출력전압 과도변동 및 회복속도

상용전원 정전 및 회복시 혹은 정격부하의 50[%] 부하급변시

(1) 과도변동 : ± 5[%]

(2) 회복속도 : 40[ms] 이내(± 2[%] 이내로 복귀 기준)

4.2.14 동작시험 및 방전시험

무정전 전원장치와 축전지간 접속하여 입력전원 OFF 시 무정전 전원장치 동작상태 유무 확인 및 축전지에 저항기 등을 연결하여 규정된 시간동안 동작여부 확인

5. 표시 및 포장

5.1 표시

- (1) 내부표시 : 제품의 사용상 지장이 없는 곳에 쉽게 지워지지 않는 방법으로 품명, 제작년월, 제작자명 또는 그 약호 등을 표시하여야 한다.
- (2) 외부표시 : 외부 표장 표면의 적당한 곳에 품명, 제작년월, 제작자명 또는 그 약호, 수량을 표시하여야 하며, 기타 필요한 추가사항은 인수·인도 당사자 간의 협의에 따라 별도로 정할 수 있다.

5.2 포장 및 운송

포장 방법은 KS T 1002에 의하며 운송 등 세부사항은 인수·인도 당사자 간의 협의에 따른다.