

공단 표준규격

(자갈매트)

KRSA-1008-R3 제정 2015.12.29. 개정 2021.12.07. 확인

1. 적용범위 및 분류

1.1 적용범위

이 규격은 철도선로에서 도상과 노반사이에 사용하는 자갈매트(ballast mat)에 대하여 적용하다.

1.2 분류

항 목	기호	세 분 류		비고	
8 F		탄성계수(N/mm³)	적용속도(km/h)	비끄	
		0.03	V < 120		
1.2.1	1.2.1 A형	0.06	$120 \le V \le 200$	진동저감용	
		0.09	$200 \leq V$		
199	1.2.2 B형	0.10	200 > V	완충구간용	
1.2.2		0.15	$200 \leq V$	선정 신중 	
1.2.3	C형	도상기	아갈 세립화 방지용(.	교량구간)	

〈표 1〉 자갈매트 분류

1.3 규격

- 1.3.1 한국산업표준(KS)
- 1.3.2 독일공업규격(DIN)

2. 인용규격

2.1 적용범위

본 규격은 [붙임 1]의 관련 규격을 인용 적용한다.

3. 구조 및 형태

제작자는 감독자로부터 제작도면을 승인 받은 후 제품을 생산하여야 하며 자갈매트의 두께 및 허용오차는 다음 〈표 2〉에 적합하여야 길이와 폭은 설계도면에 의하여야 한다..

구분	두 께(mm)		비고
A 형	19~27(보호재포함) ± 10 %		돌기가 있을 경우 돌기 포함
B형	19~27(보호재포함) ± 10 %		u
C형	25	+ 2.5	
		- 1.5	

〈표 2〉 자갈매트 두께 및 허용오차

4. 재료 및 제작기준

4.1 재료

자갈매트의 제작에 사용되는 모든 재료는 본 규격의 재료기준에 의하되, 규정된 시험을 실시하여 품질의 적합 여부를 확인한 후 적합할 경우에 사용하고, 관련 시험성적서 등 을 기록으로 남겨두어야 한다.

4.1.1 A,B형

재료는 발포폴리우레탄 및 합성고무의 동등 이상 품을 사용하여야 하며, 제품의 물리 적 성질은 다음 〈표 3〉에 적합하여야 한다.

구분		단위	기준치	시험방법
	A형	N/mm ³	0.03 ± 20 %	
			0.06 ± 20 %	
정적스프링계수			0.09 ± 20 %	5.2.1 1)항
	B형	N/mm ³	0.10 ± 20 %	
			$0.15 \pm 20 \%$	
동적스프링계수		N/mm ³	정적스프링계수 < 300 %	5.2.1 2)항
				5.2.1 3)항
압축영구줄음률		%	≤ 15	KS M 6518,
				DIN EN ISO 1856
전기저항		Ω·cm	$\geq 10^{12}$	DIN IEC 60093

〈표 3〉 A, B형 물리적 성질

4.1.2 C형

재료는 합성고무의 동등 이상 품을 사용하여야 하며, 제품의 물리적 성질은 다음 〈표 4〉에 적합하여야 한다.

구분		단위	기준치	시험방법
정적스프링정수		kN/mm	450 ± 100	5.2.2 1)항 KS M 6604
압축영구줄음률		%	≤ 25	5.2.2 2)항 KS M 6518
 인장강도	노화 전	MPa	≥ 2.5	KS M 6518
 	노화 후	%	노화전 값의 -20~25	KS M 6518
- 신 장 율	노화 전	%	≥ 100	KS M 6518
신 경 팔	노화 후	%	노화전 값의 -20 ~ 0	KS M 6518
인열강도	노화 전	N/cm	100 ≤이상	KS M 6518
친현경조	노화 후	%	노화전 값의 -10 ~25	KS M 6518
내수시험 (침투후)	흡수율	%	≤ 1.5	KS M 6518
피로강도	외관		주름, 균열 등이 생기지 않을 것	5.2.2 7)항
	두께감소	mm	≤ 1.5	
전기저항		Ω·cm	$\geq 10^{12}$	DIN IEC 60093

〈표 4〉 C형 물리적 성질

4.2 제조 및 가공

설비는 품질에 영향을 끼치는 공정을 자동화하여 소정의 정밀도로 제작할 수 있어야 하며, 계측에 필요한 설비는 정확하게 교정하고, 제조공장에는 제조 후 완제품을 검사 및 시험을 할 수 있는 설비를 갖추어야 한다.

- 4.2.1 색상은 제조자의 표준으로 하며, 배합된 재료는 성형전에 충분히 건조하여야 한다.
- 4.4.2 제품은 소정의 금형으로 성형, Roll의 형태로 제작하여야 하며, 내부 재질은 기포나 동 공이 없이 재질이 균일 하도록 제조하여야 한다.
- 4.4.3 제품의 표면은 사용상 유해한 부분이 없도록 제조되어야 한다.
- 4.4.4 매트는 별도의 고정장치 없이 노반에 설치할 수 있어야 하며, 필요한 경우 측면부를 고정 지지할 수 있는 구조로 제작하여 접착에 연속성이 있어야 한다.

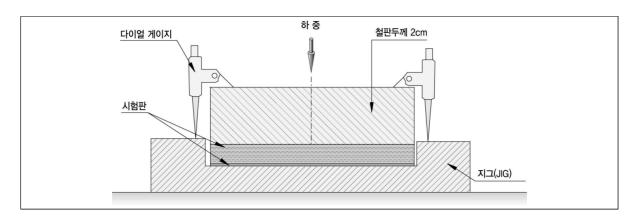
5. 검사 및 시험

자체 검사 및 시험이 불가한 경우 국내·외 시험기관에 시험을 의뢰하거나, 제작자 또는 외부설비를 이용하여 검사 및 시험을 시행할 수 있으며, 그 시험결과 이 규격에 적합하여야 한다.

5.1 검사

- 5.1.1 겉모양 및 치수 검사는 1일 생산수량의 0.5 %를 임의 추출하여 이 규격 및 제작도면 에 의하여 시행하여야 한다.
- 5.1.2 겉모양 검사

제품의 표면은 균열이 발생하거나 성능에 영향이 미칠만한 유해한 결함이 없어야 한다.


5.1.3 치수 검사

치수 및 허용오차는 [표2] 와 제작도면에 의하여야 한다.

5.2 시험

5.2.1 A,B형

- 1) 정적스프링계수 시험
 - 이 시험은 정적상태에서 하중변화와 그에 대응하는 변위량과의 관계를 측정하기 위하여, 제품 10,000 ㎡ 또는 그 단수를 1로트로 하여 로트당 1개의 시험편 [200 mm×200 mm× 두께(19 mm/27 mm)]을 임의 채취, 2시간 이상 실온에서 방치한 후 23±5 ℃에서 아래와 같이 시행하여야 한다.
 - 가) 시험하중의 하한값(P_1)은 0.02~N/mi, 상한값(P_2)은 0.10~N/mi로 하며, 시험기는 하중 $P_1~및~P_2~시험기~공칭용량의~20~100~\%$ 범위에 있는 것을 사용하여야 한다.
 - 나) 시험용 지그는 <그림1>과 같아야 하며, 4개의 지점에 ±0.02 mm의 정밀도로 측정이 가능한 변위 측정 장치(다이얼게이지)를 설치한다. 만약 어느 한 변위 측정 장치에서 측정된 변위가 평균 변위와 최대 변위의 20 %이상 차이가 난다면, 하중이 지지체에 수직으로 가해지도록 확인하면서 하중재하 주기를 반복한다.

[그림1] 시험용 지그

- 다) 시험방법은 시편에 하중을 $0 \sim P_2$ 까지 예비적으로 2회 가하되 각 회마다 하중 0 및 P_2 에서 각각 30초간 유지하여야 한다. 이 때의 재하속도는 하중이 $0 \sim P_2$ 까지 가하는 시간이 30초가 되는 8 kN/min으로 하여야 한다.
- 라) 세 번째 재하시 아래식에 의하여 정적스프링계수를 측정하여야 한다.

정적스프링계수(Cstat) =
$$\frac{P_2 - P_1}{\delta(P_2) - \delta(P_1)}$$

여기서, δ(P₁), δ(P₂) = P₁과 P₂에 대응하는 변위량

2) 동적스프링계수 시험

이 시험은 동적상태에서 하중변화와 그에 대응하는 변위량과의 관계를 측정하기 위하여, 제품 10,000 m² 또는 그 단수를 1 로트로 하여 로트당 1개의 시험편 [200 mm×200 mm×두께 (19 mm/27 mm)]을 임의 채취, 2시간 이상 실온에서 방치한 후 23±5 ℃에서 아래와 같이 시행하여야 한다.

- 가) 초기하중 0.10 N/m²일 때, 20Hz의 주파수로 진동속도레벨(L_V)을 90~100dBv로 가진 시켰을 때의 동적스프링계수(C_{dvn})를 측정한 뒤 이를 정적스프링계수와 비교 한다.
- 나) 시험장비는 정적스프링계수 시험의 시험장비를 사용하여야 한다.
- 다) 진동속도레벨(L_v)은 아래식에 의하여 계산하여야 한다.

진동속도레벨
$$(L_V) = 20 \log(\frac{V}{V_0})(dBv)$$
, 효과적인진동속도값 $(V) = 2\pi f \frac{X}{\sqrt{2}}(m/s)$

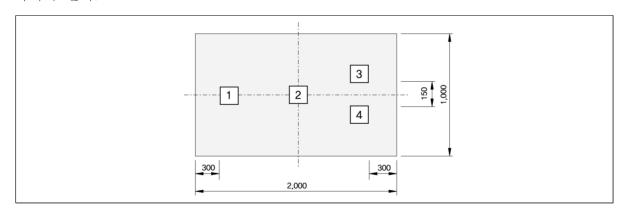
* f = 시험주파수(Hz), X = 시험변위 최대값(m), $V_0 =$ 진동속도의기본값 : 5×10^{-8} (m/s)

3) 압축 영구 줄음률 시험

제품 $10,000 \text{ m}^2$ 또는 그 단수를 1로트로 하여 로트당 1개의 시험편을 임의 채취하여 아래와 같이 시험하여야 한다.

- 가) 매트에서 안지름 50±1 mm인 시험편 1개를 채취한다. 매트에 홈이 있는 경우에는 1 개의 홈이 지름이 되도록 하고, 구멍이 있는 경우에는 원형 시험편의 일부에 결손부 가 있어도 무방하다.
- 나) 시험편 두께 50±2 %,까지 균일하게 압축한 후 15분 이내에 KS M 6518 「가황 고무 물리 시험 방법」에 규정된 공기 가열식 노화시험기에 넣고 70±1 ℃에서 22시간 유 지한 다음 시험기에서 꺼내어 압축을 풀고 30분 이내에 시험편의 거의 중앙부 홈이 없는 부분 5곳의 두께를 측정하여 그 평균값으로 아래 식에 따라 압축영구줄음률을 계산하여야 한다.

압축 영구 줄음률 (C) =
$$\frac{t_0 - t_1}{t_0} \times 100(\%)$$


 $*t_0$ = 시험편의 처음 두께(mm), t_1 = 압축된 시험편의 두께(mm)

4) 전기저항 시험

전기저항시험은 DIN IEC 60093의 내용에 의하여 시행하여야 한다.

5.2.2 C형

제품 10,000개 또는 그 단수를 1로트로 하여 다음 [그림2]의 방법에 의하여 시험편을 채취, 2시간 이상 실온에서 방치한 후 23 ± 5 $^{\circ}$ C에서 다음 [표4]에 시험을 아래와 같이 시행하여야 한다.

[그림2] 시험용 지그

시험 항목		시험편	시험편 채취	시험 값
정적스프링정수		100×100×25 mm	4개소 각 1개	4개 평균
압축영구줄음률		100×100×25 mm	4개소 각 1개	4개 평균
 인장강도	노화전	KS M 6518	4개소 각 1개	2개 평균
인경경도	노화후	아령형 3호	(노후전,후 각 2개)	2개 평균
인열강도	노화전	KS M 6518	4개소 각 1개	2개 평균
한 현경 포	노화후	B형	(노후전,후 각 2개)	2개 평균
내수시험	인장강도 신장률 흡수율	KS M 6518 아령형 3호	4개소 각 1개 (침수전,후 각 2개)	2개 평균
피로강도	균열	50×50×25 mm	4개소 각 1개	4개 평균
전기저항		DIN IEC 60093의	내용에 의하여 시행	

[표 4] 시험조건

1) 정적스프링정수 시험

KS M 6604「방진 고무 시험 방법」에 의하여 1 mm/min의 압축속도로 시험편을 2회 예비 압축한 후 3번째의 하중변위 곡선으로부터 아래식으로 정적스프링정수를 구하여 야 한다.

$$\mathbf{K} = \frac{\mathbf{P_2} \text{-} \mathbf{P_1}}{\delta(\mathbf{P_2}) - \delta(\mathbf{P_1})}$$

* K = 정적스프링정수(kN/mm), $P_1 = 하중의 하한값(0.01 kN)$, $P_2 = 하중의 상한값(0.04 kN)$, $\delta(P_1)$, $\delta(P_2) = P_1$ 과 P_2 에 대응하는 변위량

2) 압축 영구 줄음률 시험

KS M 6518「가황 고무 물리 시험 방법」에 의거 70±1 ℃에서 22시간 동안 30 % 압축한 후열처리가 끝나면 시험편을 즉시 압축장치에서 꺼내어 실온에서 30분간 냉각시킨 후최종 두께를 측정, 아래 식으로 압축영구줄음률을 구하여야 한다.

$$C = \frac{t_0 - t_1}{t_0 - t_2} \times 100$$

* C = 압축영구변형률(%), t0 = 시험편의 원두께(mm), t₁ = 압축장치에서 꺼낸 30분후의 두께(mm), t₂ = 스페이서 두께(mm)

3) 노화 시험

KS M 6518「가황 고무 물리 시험 방법」에 의거 시험조 중앙부의 온도를 70±1 ℃에서 96시간 가열하여야 한다.

4) 인장 시험

KS M 6518 「가황 고무 물리 시험 방법」에 의거 노화전, 후의 인장시험을 하고 인장 강도, 신장률 및 인장응력을 아래식에 의하여 계산하여야 한다.

가) 인장강도
$$(T_B) = \frac{F_B}{A}$$

* TB = 인장강도(kg/cm²), FB = 최대하중(kg), A = 시험편의 단면적(cm²)

나) 신장률(
$$E_B$$
) = $\frac{L_1 - L_0}{L_0}$

* E_B = 신장률(%), L₀ = 표선거리(mm), L₁ = 절단될 때의 표선사이의 거리(mm)

다) 인장응력
$$(Mn) = \frac{Fn}{A}$$

- * Mn = 인장응력(kg/cm), Fn = 특정한 신장률(%)에서의 하중(kg)
- * Mn에서 n는 특정한 신장률(%)의 수치

5) 인열강도 시험

KS M 6518 「가황 고무 물리 시험 방법」에 의거 아래 식에 의하여 인열강도를 계산 하여야 한다.

가) 인열강도
$$(Tr) = \frac{F}{t}$$

* Tr = 인열강도(kg/cm), F = 최대하중(kg), t = 시험편의 두께(cm)

6) 내수 시험

시험편을 수돗물에 96시간 담근 후 다음식에 의하여 흡수율을 구하고, 인장시험을 하여야 한다.

가) 흡수율 =
$$\frac{W_2-W_1}{W_1} \times 100(\%)$$

* W₁ = 물에 담그기 전의 중량(kg), W₂ = 물에 담근 후의 중량(kg)

7) 피로강도 시험

다음 [표 5]의 조건에서 시험을 한 다음 30분 후 시험편의 두께를 측정하여 최대 두께 감소량을 측정하여야 한다.

예비압축	- 4 mm
진폭	± 2 mm
진동수	300 ± 10 회/min
반복회수	1×10^{6}
시험온도	20 + 10 °C 0 °C

[표 5] 피로강도 시험조건

8) 전기저항 시험

전기저항시험은 DIN IEC 60093의 내용에 의하여 시행하여야 한다.

5.3 품질보장

5.3.1 합격품질수준

5.1검사 및 5.2 시험 결과 이 규격에 적합할 때 합격으로 하며, 이 규격에 적합하지 않을 경우에는 해당 로트 전부를 불합격으로 한다. 다만, 불합격된 시험항목에 대하여는 1회에 한하여 재시험할 수 있으며 이때 시험 수량은 2배수로 하여야 한다.

6. 포장 및 표시

6.1 포장

일정수량을 박스 또는 파렛트에 담아 운반·적재시 손상되지 않게 하여야 하며, KS T 1002(수송포장계열치수)에 적합하도록 포장하고 밴드를 사용하여 견고히 묶어야 한다.

6.2 표시

6.2.1 제품

각 제품 위 부분의 잘 보이는 적당한 곳에는 제작자명 또는 약호, 제품형태 또는 규격 (두께치수)을 표기하여야 한다.

6.2.2 포장 표면

포장용 마대 또는 포장상자 표면의 잘 보이는 적당한 곳에는 품명, 규격, 수량, 제작자명 또는 약호, 제작년월을 표시하고, 운반이나 취급상의 주의사항을 별도로 명시하여야 한 다.

[붙임 1]

인 용 규 격

(1) 한국산업표준(KS)

KS M 6518「가황 고무 물리 시험 방법」 KS M 6604「방진 고무 시험 방법」 KS T 1002「수송 포장계열 치수」

(2) 독일공업규격(DIN)

DIN EN ISO 1856 Flexible cellular polymeric materials — Determination of compression set」

DIN IEC 60093 Methods Of Test For Insulating Materials For Electrical Purposes; Volume

Resistivity And Surface Resistivity Of Solid Electrical Insulating

Materials